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Abstract

Radio-frequency geolocation has become critical for applications such as electronic

reconnaissance, emergency response or interference mitigation. While geolocation

systems have been employed from ground and air-based platforms, CubeSats are

currently being evaluated as low-cost solutions for space-based RF geolocation. This

research 1) evaluates the effectiveness of CubeSat geolocation and 2) analyzes the

sensitivity of different algorithms to system parameters.

This research evaluates the accuracy of AOA, TDOA, and T/FDOA geolocation

implemented with 1-4 CubeSats in low Earth orbit (LEO) in the presence of receiver

location and measurement errors. The sensitivity of each algorithm to altitude, orbit

and cluster geometry, measurement error, and receiver location error is analyzed.

This research also includes the geolocation performance analysis of a 500 km altitude

CubeSat cluster based on system parameters representative of commercially available

hardware.

A MATLAB R○ simulation is developed to assess geolocation accuracy given vari-

able system designs, such as varied number of space vehicles (SVs), orbit, cluster

geometry, technique (AOA, TDOA, T/FDOA), and other system level constraints.

The simulation contains the Initial Transmitter Localization (ITL) algorithms as well

as the application of an unconstrained maximum likelihood estimator (MLE), which

improves upon ITL accuracy by more than 90% in some cases, and a DTED grid

search, which improves upon MLE accuracy by up to 40%. For the scenarios inves-

tigated, sub-kilometer geolocation accuracy was achievable when AOA, TDOA, and

FDOA error was less than 0.05∘, 50ns, and 100Hz, respectively.
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Nomenclature

Note: Positions and velocities in ECEF unless otherwise stated

a Vector (lowercase, bold)

A Matrix (uppercase, bold)

𝑎 Scalar variable or magnitude of a vector

𝐴 Constant (uppercase)

𝑎̃ Noise corrupted (tilde)

C Estimate covariance or confidence

I Identity matrix

𝐿 Number of measurement parameters in a signal collect

m Measurement vector (e.g. [𝛼, 𝜖]𝑇 )

𝑀 Total number of measurements

p Location of terrain post

𝑃 Total number of terrain posts

Q Covariance matrix of noise inputs

𝜌𝑖 Range vector from transmitter to 𝑖𝑡ℎ satellite, [s𝑖 − u]

𝜌𝑖 Euclidean distance from transmitter to 𝑖𝑡ℎ satellite, ||𝜌𝑖||
𝜌̇𝑖 Time rate of change of 𝜌𝑖

𝑟𝑖1 Range difference between 𝑖𝑡ℎ and reference satellite, 𝜌𝑖 − 𝜌1

𝑟̇𝑖1 Range rate difference between 𝑖𝑡ℎ and reference satellite, 𝜌̇𝑖 − 𝜌̇1

s𝑖 Satellite position [𝑥, 𝑦, 𝑧]𝑇

ṡ𝑖 Satellite velocity [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
𝑇

𝑆 Number of satellites

𝜏21 Time difference of arrival of received signal between satellite 2 and 1

𝜏21 TDOA time rate of change / nondimensionalized FDOA, (𝑓𝑑𝑖 − 𝑓𝑑1)/𝑓𝑐

u Transmitter position

W Weighting matrix of T/FDOA equation error
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AN ANALYSIS OF RADIO-FREQUENCY GEOLOCATION TECHNIQUES FOR

SATELLITE SYSTEMS DESIGN

1. Introduction

The 21st century has seen rapid development in spacecraft technology and the

number of satellites has increased exponentially. Geolocation of radio-frequency (RF)

transmitters is not a new concept, but with the increase of satellite capabilities and

the advent of CubeSats the military and commercial world have found utility in

geolocating transmitters from space [3].

Space-based RF geolocation involves estimating the location of a transmitter based

on its signal received at one or more satellites. Space-based geolocation has many

military and commercial applications. Geolocation techniques could be useful for

search and rescue missions, locating RF sources attempting to jam communication

satellites, or estimating the location of an unknown enemy transmitter [3, 11, 12].

There are multiple algorithms that can be applied in space-based geolocation, each

of which utilize the frequency, angle of arrival, or time of arrival of an RF signal to

determine an estimate for the location of the transmitter. The choice of geolocation

technique depends on many different factors, including whether the transmitter is

cooperative or not, i.e. whether its characteristics are known, how many satellite

receivers are available, orbit design, and other system level constraints. This research

focuses on the Angle of Arrival (AOA), Time Difference of Arrival (TDOA), and

combined Time and Frequency Difference of Arrival (T/FDOA) methods applied

from CubeSats in Low Earth Orbit (LEO).
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1.1 Motivation

Geolocation is by no means a novel subject of research, but within the last few

decades there has been an increased amount of research applying geolocation from new

platforms, namely satellites and unmanned aerial vehicles (UAVs) [13–15]. Nanosatel-

lites, commonly referred to as CubeSats because of their standardized cube-like form

factor, have become increasingly popular due to their accessibility and low cost [16].

The number of CubeSat missions has skyrocketed as space mission designers have

explored CubeSat operational capabilities that were once exclusive to large satel-

lites [17–19]. Several small satellite RF geolocation missions have emerged in the

last few years. The SAMSON mission consists of a cluster of autonomous 3U Cube-

Sats employing TDOA and FDOA geolocation of a cooperative RF transmitter [20].

Pathfinder, developed by HawkEye 360 [12], is a 3-Microsatellite cluster in a 575

km circular orbit designed to execute T/FDOA geolocation. The Air Force Institute

of Technology (AFIT) has been investigating the feasibility of CubeSat geolocation

for several years, and multiple theses have been dedicated to the topic [4, 8, 21, 22].

As small satellite geolocation missions are being realized, the need to implement RF

geolocation theory for system design and performance analysis is increasing.

1.2 Research Objective

The goal of this thesis is to explore two questions. The first question is, how

sensitive are the AOA, TDOA, and T/FDOA geolocation techniques to system pa-

rameters, such as measurement or space vehicle (SV) positioning error? The second

question is, how accurately can a CubeSat in LEO geolocate an RF transmitter

based on system parameters representative of commercially available hardware? The

method of answering the first question will be to conduct a sensitivity analysis for

six common RF localization algorithms that utilize AOA, TDOA, and FDOA mea-
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surements. A system level performance analysis will be conducted to investigate the

second research question. These analyses require the development of an end-to-end

geolocation simulation, which will be discussed in the next section.

1.3 Methodology

A MATLAB R○ simulation will be developed to determine the geolocation accuracy

achievable for a variety of geolocation scenarios and system parameters. A geolocation

scenario will be simulated in Systems Tool Kit (STK R○) where a ground transmitter

and satellite receivers in LEO will be defined. Imported data from the STK scenario

will be combined with user defined system parameters in MATLAB to simulate angle,

time, and frequency measurements. Previously developed [4,23–25] geolocation algo-

rithms will be utilized to conduct initial transmitter localization (ITL). The MATLAB

simulation will also apply maximum likelihood estimation and a new technique for

implementing digital terrain elevation data for a surface of the Earth constraint. This

geolocation tool will be utilized to conduct the sensitivity and performance analyses,

as well as provide a framework for further geolocation analysis.

1.4 Scope of Research

Simulation of a space-based geolocation scenario involves several steps. It includes

characterizing the RF transmitter of interest, defining the number of satellites, satel-

lite orbits and receiver characteristics, modeling the signal propagation, detection and

processing, executing a geolocation algorithm, then using an estimation technique to

derive a location estimate and covariance. The front end of the simulation spans from

RF transmitter definition to a stored angle, frequency, or time measurement. The

back end of the simulation is considered to be the process of obtaining a single location

estimate and covariance from an angle, frequency, or time measurement. This thesis
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is primarily focused on the back end of the geolocation scenario, with some thought

given to the front end only for the purposes of setting up a realistic scenario. The

investigation of signal measurement algorithms are outside the scope of this research,

however signal measurement errors are considered.

1.5 Assumptions

There are also other underlying assumptions present in this research. It is as-

sumed that the RF signal of interest is from a single, stationary, terrestrial trans-

mitter. The relative velocity of the satellite receiver compared with the velocity of

a moving terrestrial transmitter makes the stationary transmitter assumption favor-

able for this research. Although a scenario of multiple transmitters is possible, only

a single-transmitter scenario is considered. The only information known about the

RF transmitter is its carrier frequency. Co-channel interference and multipath effects

are neglected and it is assumed that the signal of interest can be detected, segregated

from other in-band signals, and processed. Furthermore, it is assumed the satellites

receiving the signals are CubeSats in LEO. For this scenario the CubeSats are taken

to be 12U (24 × 36 × 24 𝑐𝑚3) and their altitude is 500 km. It is assumed that

the CubeSats are able to perform orbit maintenance and are operationally available

during the time they have line of sight to the transmitter.

1.6 Research Outcomes

In addition to the sensitivity and performance analyses previously discussed, a

guide for utilizing the geolocation tool set will be produced. The geolocation tool set

produced in this effort will benefit future AFIT students involved in the space vehicle

design sequence. The simulation can be utilized to answer two different questions.

Firstly, given a required geolocation accuracy, which system design parameters would
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be needed for each geolocation algorithm? And on the contrary, given a set of system

parameters, what is the best accuracy that can be achieved?

This research will provide a framework for future geolocation analyses and Cube-

Sat preliminary design. Future students or system designers will be able to leverage

the tool in determining the best constellation design and hardware requirements for

accomplishing a geolocation mission using CubeSats. Additional analyses pertaining

to the mission concept of operations can be conducted using the simulation. Optimal

cluster geometries for CubeSat geolocation can be investigated. Furthermore, trade

studies can be performed to determine the usefulness of platforms capable of employ-

ing multiple geolocation algorithms at once, or the performance risk due to on-orbit

CubeSat failure.

1.7 Thesis Organization

Chapter 2 discusses existing geolocation techniques. Chapter 3 outlines the method-

ology used to simulate a geolocation scenario for 1-4 CubeSats. Chapter 4 discusses

the results for the sensitivity analysis. Chapter 5 discusses the system level perfor-

mance of a LEO CubeSat. Chapter 6 presents the conclusions of the research along

with recommendations for future research.
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2. Background

Geolocation is simply the process of determining the geographical location of an

object. Space-based RF geolocation is the process of locating an RF transmitter

using satellite sensors. RF geolocation can be divided into two steps: measurement

and estimation [13]. The effectiveness of a geolocation system depends on its ability to

sense the RF signal of interest, obtain a measurement, and estimate the location of the

transmitter based on the measurements received. As an RF signal arrives at a satellite

sensor it has at least three attributes which yield useful measurement information: its

frequency, phase, and time of arrival. There has been significant research on methods

of processing measurements and determining an RF transmitter’s location based on

these measurements [3, 11].

2.1 CubeSats

Advent of CubeSats A CubeSat is a small satellite made up of roughly

10× 10× 10 𝑐𝑚3 cubes [16]. A 1U CubeSat is therefore a 10× 10× 10 𝑐𝑚3 cube and

a 3U CubeSat is approximately 10× 10× 30 𝑐𝑚3.

The design of CubeSats originated at California Polytechnic University (Cal Poly)

and Stanford University in 1999 [16]. The CubeSat is ideal because it is small,

relatively inexpensive, and standardized, allowing it to be versatile in supporting a

variety of applications and accommodating a shorter development cycle than large

satellite programs [16]. Thus CubeSat development has not only served the needs of

the DoD, but has become accessible to university research worldwide.

Cal Poly has published specifications that govern the design of CubeSats [26].

CubeSats are standardized to fit within and deploy from Poly-Picosatellite Orbital

Deployers (P-POD), which were also developed by Cal Poly and Stanford. The ability
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Figure 1. 1U, 1.5U, 2U, and 3U CubeSats [1]

for payload engineers to design their payloads to fit within a standard bus provides

flexibility, reduces cost, and greatly decreases the time from design to launch [16].

CubeSat Geolocation Missions The Air Force Institute of Technology

(AFIT) space vehicle design course has featured various CubeSat geolocation mission

designs. GeoLoco [27] was a 3-CubeSat design employing TDOA and AOA geolo-

cation from LEO. Anubis [28] and ERIC [10] each involved single-CubeSat AOA

geolocation from LEO. In addition to AFIT SV design studies, the Technion-Israel

Institute of Technology has developed a geolocation mission called the Satellite Mis-

sion for Swarming and Geolocation (SAMSON). SAMSON consists of a 3-CubeSat

LEO constellation designed to conduct TDOA geolocation [20]. Another geolocation

mission, Pathfinder, has been developed by HawkEye 360 [12]. Pathfinder features

a 3-Microsatellite cluster in a 575 km circular orbit designed to execute T/FDOA

geolocation [12].
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Guidance, Navigation, and Control Employing CubeSats to conduct RF

geolocation presents many SV design challenges due to the size, weight, and power

constraints. In addition, geolocation using a CubeSat cluster presents command and

data handling (C&DH) challenges associated with cross linking and synchronizing

received signals. However, the most notable design challenge is the the guidance,

navigation, and control (GNC) subsystem. The GNC subsystem of a spacecraft

contains the components used for absolute and relative position determination and

for the attitude determination and control system (ADCS) [18]. RF Geolocation

requires precise position and attitude determination, so CubeSat GNC limitations

have a significant impact on mission success.

Attitude Determination For AOA geolocation, precise attitude determi-

nation is vital. Typical components included in the ADCS are reaction wheels, magne-

tometers, magnetorquers, and star trackers [18]. NASA Small Spacecraft Technology

Program’s 2015 report [18] presented three star trackers of technology readiness level

(TRL) 9 which can yield between 0.02∘ and 0.007∘ attitude determination accuracy.

Absolute Positioning On-board Global Positioning System (GPS) receivers

are the primary method used by small satellites in LEO for absolute orbit determina-

tion [18]. According to NASA [18] the state of the art for absolute position accuracy

is currently 1.5 m in each axis. Canadian Advanced Nanospace eXperiment (CanX),

a dual nanosatellite mission of the University of Toronto launched in June 2014, em-

ployed GPS receivers for orbit determination in a formation flying demonstration. In

November 2014, CanX accomplished its mission goals, including the achievement of

absolute position and velocity determination accurate to within 10 m and 20 cm/s,

respectively [29]. As expected, a 2 m bias was incorporated in the error due to the

geometric distribution of GPS satellites.
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Relative Positioning Relative navigation of small satellites has been an

area of increasing interest. Bandyopadhay et al. [19] reviews recent small satellite

formation flying missions which have either been completed or are still in develop-

ment. Relative navigation is more precise than absolute navigation due to the use of

differential GPS. Differential GPS uses the GPS measurements obtained at multiple

receivers to eliminate errors common to all receivers [30], thereby reducing relative

position and velocity estimation error. The CanX satellites demonstrated relative

position and velocity determination accurate to within 10 cm and 3 cm/s, respec-

tively [29].

2.2 Formation Flying

As previously mentioned, there have been several developed or completed small

satellite formation flying missions, including Pathfinder [12], SAMSON [20], CPOD

[31], AeroCube-4 [32], and CanX [29]. CanX accomplished formation maneuvers

with two 20-cm cube satellites spaced less than 1 km apart [29]. NASA’s CubeSat

Proximity Operations Demonstration (CPOD) [31] features the formation of two 3U

CubeSats spaced up to 25 km apart. The HawkEye 360 Pathfinder mission, featuring

a 3-microsatellite cluster designed for RF geolocation, intends to have a baseline

distance of 125-250 km [14]. The technological advancement of autonomy and relative

navigation has paved the way for CubeSat formation flying missions. Multi-satellite

geolocation is just one of many possibilities.

Hill-Clohessy-Wiltshire Equations In formation flying, the relative satel-

lite motion is commonly described in a non-inertial coordinate frame called the local-

vertical local-horizontal (LVLH) frame, seen in Fig. 2. The LVLH frame reference is

the chief SV orbit, and the reference orbit does not have to be occupied by a phys-
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ical SV. In the LVLH frame, 𝑥, 𝑦, and 𝑧 are referred to as the radial, in-track, and

cross-track directions, respectively. As seen in Fig. 2, 𝑦 is perpendicular to 𝑥 and

𝑧 completes the right-handed coordinate system, and is perpendicular to the orbital

plane. Curtis [33] discusses the dynamics of relative satellite motion. When the orbit

Figure 2. Local-vertical local-horizontal (LVLH) frame [2]

of the chief SV is circular, then 𝑦 is in the direction of the chief SV velocity vector,

and the frame can be referred to as the Hill-Clohessy-Wiltshire (HCW) frame [33].

The HCW equations describe the motion of a SV with respect to a reference SV in a

circular orbit [33].

𝛿𝑥̈− 3𝑛2𝛿𝑥− 2𝑛𝛿𝑦̇ = 0

𝛿𝑦 + 2𝑛𝛿𝑥̇ = 0

𝛿𝑧 + 𝑛2𝛿𝑧 = 0

(2.1)

In Eq. 2.1 𝑛 is the chief SV’s mean motion. Since all of the orbits discussed in this

research are circular, the LVLH frame will be referred to as the HCW frame. Alfriend

et al. [2] manipulate the HCW equations to express the 𝑥, 𝑦, 𝑧 position of a deputy

SV in the HCW frame at an instant in time. The deputy position is expressed in
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terms of the chief SV’s orbital elements and the deviation 𝛿 in orbital elements [2]:

𝑥 = 𝛿𝑟

𝑦 = 𝑟1(𝛿𝜃 + 𝛿Ωcos 𝑖1)

𝑧 = 𝑟1(𝛿𝑖 sin 𝜃1 − 𝛿Ω sin 𝑖1 cos 𝜃1)

(2.2)

𝑖1, 𝜃1, and 𝑟1 are the inclination, argument of latitude, and radius from the Earth’s

center of the chief SV, respectively. 𝛿Ω is the difference in longitude of the ascending

node (LAN) between the two SVs (𝛿Ω = Ω2 − Ω1). These equations are approxima-

tions for an reference time 𝑡0, because 𝑥, 𝑦, 𝑧 change as the deputy orbits around the

chief SV.

Formations The satellite formation certainly has an impact on the geolo-

cation accuracy of the system [14]. CaJacob et al. [14] discuss a few formations

considered for their CubeSat geolocation cluster. In general, geometric diversity of

the formation yields better geolocation accuracy but sacrifices simplicity [14]. The

Non-Coplanar Oscillator (NCO) formation, features two satellites in the same orbital

plane but shifted in phase, and the third satellite in an offset plane defined by some

change in inclination or right ascension of the ascending node (RAAN) [14]. This

formation is less complex than a Natural Motion Circumnavigation (NMC) forma-

tion and more geometrically diverse than a Co-Planar arrangement [14]. A formation

similar to NCO is utilized in this research. The exploration of optimal formations for

geolocation is left for future work.

2.3 Signal Measurement

The first step in geolocating an RF transmitter is to measure the angle, time,

and/or frequency of its signal as sensed by the receiver. There are different techniques
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and hardware required for measuring angle, time, and frequency of arrival. Gentile et

al. [11] discuss multiple geolocation measurement techniques, including the conditions

under which they are utilized. While signal measurement techniques were not utilize

in this research, a discussion is necessary to give the reader a perspective of the

challenges associated with the different geolocation methods. This thesis will examine

three different passive geolocation measurement techniques: angle of arrival (AOA),

time difference of arrival (TDOA), and combined time and frequency difference of

arrival (T/FDOA). Each section contains the measurement model, common methods

for signal measurement, sources of error, and advantages and disadvantages.

2.3.1 Angle of Arrival

2.3.1.1 Measurement Model

When an RF signal is sensed by a satellite receiver, the direction of arrival (DOA)

can be measured. In three-dimensional space, the signal’s DOA can be fully described

by two angles, known as the AOA. Similarly, if a DOA or AOA is obtained, a line of

bearing can be generated with the receiver as its reference point.

s1

s2

s3

ε

α

s(t)
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s3
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α

d̂

Figure 3. Line of bearing d̂ represents signal 𝑠(𝑡) direction of arrival (sensor coordinate
frame)

If using space-based receivers, the intersection of this line of bearing (LOB) with
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the surface of the Earth or with other LOBs can give the estimated location of the

unknown RF transmitter. AOA measurements can be obtained using a single satellite

receiver. The process of determining the AOA of an RF signal is commonly known

as direction finding (DF) [3].The most common technique of transmitter DF is the

use the amplitude or phase measurements of the RF signal at multiple antennas to

determine an AOA [3].

2.3.1.2 Phase interferometry

The method of measuring the direction of incoming waves based on their phase

difference at different antennas is referred to as phase interferometry [3]. At least two

antennas are required to determine a single angle of arrival. Fig. 4 shows the general

concept of the angle measurement and estimation. Once the signals are processed

there must be phase correlation to produce an AOA.

Receiver 1 Receiver 2

Phase Discriminator 

(Correlator)

Angular 

Transformation

θ

ϕ

Transmitter Direction

Bore Sight

θ

θ

Baseline distance

90°
Planar 

Wavefront

Figure 4. Theoretical diagram of a single baseline phase interferometer [3]
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In order to achieve 2D angle estimation, or in other words, an azimuth and eleva-

tion of arrival, an antenna array is needed [3]. Antenna arrays are effective because

they provide a variation in baseline length, and minimize the likelihood of phase am-

biguity and poor AOA measurement accuracy, depending on the RF signal direction

of arrival. There is significant literature evaluating the efficacy of different antenna

array configurations, most commonly linear and circular arrays [34, 35]. Tan [35] in-

vestigated the application of a wireless location system using a uniform circular array

(UCA, see Fig. 5) . Bailey [4] explored the implementation of a UCA hoisted on a

6U CubeSat.

2.3.1.3 Multiple Signals Classification Algorithm

A new direction finding technique is known as space spectrum estimation, or the

process of estimating the spatial frequency and determining other parameters accord-

ing to the output signal from multiple antenna elements [3]. The Multiple Signals

Classification (MUSIC) algorithm is a common spectrum estimation technique devel-

oped by Schmidt in 1979 [36]. It utilizes the eigenstructure of the spatial covariance

matrix of signals received by 𝐴 antenna elements to determine the AOA of each im-

pinging signal [36]. Bailey [4] investigated how the MUSIC algorithm could be applied

with a UCA. One limitation of utilizing a UCA is the array elements must be no more

than 𝜆
2
apart, 𝜆 being the wavelength of the received signal in order for the phase

difference to be distinguished. This constrains the minimum signal frequency that

can be detected due to the limited surface area available on a CubeSat.

The MUSIC algorithm has the ability to resolve multiple signals at the same

time [36]. If 𝐴 is the number of antennas it is generally able to segregate 𝐴 − 1

impinging signals. Once executed, the peak values of the MUSIC spectrum can be

extracted to obtain the AOA (Fig. 6).
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Figure 5. Uniform circular array geometry in the sensor frame. 𝐴 antenna elements
lie in 𝑠1𝑠2 plane. Angles of arrival 𝛼 and 𝜖 can be measured for the received signal 𝑠(𝑡)
(adapted from [4]).

Figure 6. Example MUSIC spectrum for a 4 element UCA with 2 impinging signals [4]
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MUSIC has several advantages over traditional DF techniques. Its incorporation

of digital signal processing technology gives it higher accuracy and super-resolution,

and it has been widely researched and implemented [3].

2.3.1.4 Accuracy

In general, the accuracy of angle measurement techniques depends on the signal

processing capability of the receiver, the antenna array used, the RF environment, and

the signal characteristics. Thus the AOA measurement problem is relatively complex.

With respect to signal processing, the phase and frequency measurement error at

the receiver contribute to overall AOA error [3]. The phase of the signals must be

properly measured and discriminated. In addition, the geometry of the antenna array

limits the capability of the AOA measurement and effects its maximum accuracy. A

smaller distance between the antennas, or small baseline length, leads to a greater

AOA measurement error [3]. On the other hand, if the baseline is too large baseline

distance relative to the signal’s wavelength, the problem of phase ambiguity could

occur [3].

Bailey [4] analyzed the MUSIC algorithm in depth and investigated its theoretical

performance for a 4-antenna UCA on a 6U CubeSat. In general, the accuracy of

the AOA measurement depends on the signal-to-noise ratio (SNR) 𝛾 of the received

signal, the number of samples of the signal 𝑁 , the number of antenna elements 𝐴,

the radius of the UCA 𝑟, and the wavelength of the received signal 𝜆𝑟 [4]. He showed

that for a 4-antenna UCA receiving a narrow-band signal the MUSIC theoretical

AOA error approached the 2D angle Cramér-Rao Lower Bound (CRLB) in scenarios

where the signal-to-noise ratio 𝛾 and the number of samples 𝑁 is sufficiently high.

The CRLB on the variance of 2D angle estimates is given in Eq. 2.4 and Eq. 2.3,

respectively [4].
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𝜎2
𝛼 =

𝛾−1 + 𝐴

𝛾𝑁𝐴2(2𝜋𝑟/𝜆𝑟)2 sin
2(𝜖)

(2.3)

𝜎2
𝜖 =

𝛾−1 + 𝐴

𝛾𝑁𝐴2(2𝜋𝑟/𝜆𝑟)2 cos2(𝜖)
(2.4)

It can be observed that the theoretical error is negligibly impacted by the azimuth

of arrival. However as elevation of arrival approaches 90 degrees as defined by (Fig.

5), the elevation variance increases and the azimuth variance decreases. In other

words, if the direction of the incoming signal is parallel to the plane of the array the

system is prone to higher elevation measurement error.

2.3.1.5 Advantages and Disadvantages

AOA geolocation has several advantages. Firstly, it can be employed with a

single satellite, removing the complexity of a cluster of satellites. Therefore time

synchronization and cluster maintenance do not need to be considered. It is also

typically fast and favorable to signal sorting [3]. However, the payloads for AOA

geolocation platforms are more complex because they require multiple antennas on

a single satellite. Single-SV AOA requires precise receiver attitude measurement,

and as SV attitude knowledge error and SV altitude increase, the AOA geolocation

estimate error increases. Another challenge is obtaining accurate angle estimation, as

with the MUSIC algorithm [11]. As a result, AOA geolocation error is typically large

compared to TDOA or T/FDOA measurements taken from a similar altitude [3].

2.3.2 Time and Frequency Difference of Arrival

The time difference of arrival (TDOA) and frequency difference of arrival (FDOA)

of an RF signal can be determined with more than one satellite. There has been
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significant research on the application of geolocation using only TDOA measurements

and the combination of TDOA and FDOA measurements [13, 23, 37]. Most satellite

systems utilize TDOA measurements for geolocation, however FDOA measurements

can also be obtained if relative motion exists between the transmitter and the receivers

[23]. Since the relative velocity between LEO satellites and a stationary transmitter

is nearly 7 km/s, using FDOA measurements is a valid approach. The following

Sections 2.3.2.1 and 2.3.2.2, discuss how TDOA and T/FDOA measurements are

useful for obtaining transmitter position estimates.

2.3.2.1 TDOA Measurement Model

The time difference 𝜏𝑖1 measured between the 𝑖𝑡ℎ SV receiver and the reference

SV receiver (1) can be related to the range difference 𝑟𝑖1 between each SV and the

transmitter, respectively.

𝜏𝑖1 = 𝑡𝑖 − 𝑡1 =
𝜌𝑖 − 𝜌1
𝑐

=
𝑟𝑖1
𝑐

𝑖 = 2, 3..., 𝑆

𝜌𝑖 ≡ ||𝜌𝑖|| = ||s𝑖 − u||
(2.5)

Note that 𝑡𝑖 is the time the signal was received at SV 𝑖, 𝜌𝑖 is the range from the

transmitter to the 𝑖𝑡ℎ SV, s𝑖 is the ECEF position of the 𝑖𝑡ℎ SV, and u is the true ECEF

transmitter position. There are multiple transmitter locations that could satisfy this

equation. A hyperbola can be defined as a set of points in a plane whose distances

to two fixed points have a constant difference. In 2D space, multiple hyperbolas

from multiple independent TDOA measurements can be intersected to determine a

transmitter location [24].

Therefore in 3D space, for a single TDOA, the transmitter could lie on the sur-

face of a hyperboloid. Two TDOA measurements yield two hyperboloids, and the

intersection of these hyperboloids leads to a curve of interest. In order to determine
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SV 1 SV 2

𝜌2𝑡

𝜌1𝑡

Transmitter could lie anywhere on 

hyperbola in 2D space

Figure 7. 1 TDOA measurement yields a hyperbola of possible transmitter locations

a single point estimate a third surface must be intersected. A third TDOA mea-

surement could provide another surface, or if the transmitter is known to lie on the

Earths surface, then a surface of the Earth constraint could be used. There are mul-

tiple techniques of obtaining 3 independent TDOA measurements. In order to obtain

an instantaneous transmitter location estimate, only 3 TDOA measurements (from

4 satellite receivers) would be needed [3]. If the surface of the Earth constraint is

used, only 2 TDOAs from 3 receivers would be necessary. Ho and Chan enumerate a

method for conducting TDOA geolocation with multiple satellites [3].

2.3.2.2 Combined T/FDOA Measurement Model

While passive TDOA geolocation requires at least 3 satellites to obtain an in-

stantaneous solution, combined T/FDOA geolocation can be implemented using a

dual-satellite system [3]. Once each satellite receiver intercepts the transmitter’s

signal, the signal can be cross-linked to the reference satellite. Ho and Chan [23]
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developed an algebraic solution for the dual-satellite T/FDOA as well as a general

solution for T/FDOA when more than 2 satellite receivers are present.

As discussed in the previous section, each TDOA measurement produces a hy-

perboloid describing the transmitter’s possible location. In the combined T/FDOA

scenario, if the TDOA and FDOA measurements are taken simultaneously, the TDOA

hyperboloid and FDOA revolution surface can be intersected with the Earth’s surface

to retrieve two possible transmitter solutions [3].

Satellite Orbit

Transmitter

TDOA/FDOA 

Localization 

Circle

Satellite 2

Satellite 1

Figure 8. Sketch of the dual-satellite TDOA-FDOA combined geolocation principle [3]

The FDOA measurement equation can be obtained by taking the time derivative

of the TDOA equation, Eq. 2.5.

𝜏𝑖1 =
𝑟̇𝑖1
𝑐

=
𝜌̇𝑖 − 𝜌̇1
𝑐

𝑖 = 2, 3..., 𝑆 (2.6)

Here 𝜌̇𝑖 is the time derivative of 𝜌𝑖 which is also the relative velocity of the 𝑖𝑡ℎ satellite
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with respect to the transmitter in the direction of 𝜌𝑖. 𝑆 is the number of SVs.

𝜌̇𝑖 =
𝜕𝜌𝑖
𝜕𝑡

= ṡ𝑇𝑖
𝜌𝑖

𝜌𝑖
= (ṡ𝑖 − u̇)𝑇

(s𝑖 − u)

𝜌𝑖
𝑖 = 2, 3..., 𝑆 (2.7)

The change rate of the TDOA 𝜏 can be obtained from frequency measurements. First

consider the Doppler shift due to the relative velocity of satellite 𝑖 with respect to the

transmitter u (assuming u̇ = 0), where 𝑓𝑐 is the signal carrier frequency.

𝑓𝑑𝑖 =
𝑓𝑐
𝑐

[︂
ṡ𝑇𝑖

(s𝑖 − u)

𝜌𝑖

]︂
=
𝑓𝑐
𝑐
𝜌̇𝑖 (2.8)

Thus Eq. 2.6 can be rewritten in terms of the difference in Doppler shift between the

𝑖𝑡ℎ and reference satellite.

𝑐𝜏𝑖1 =
𝑐

𝑓𝑐
[𝑓𝑑𝑖 − 𝑓𝑑1] (2.9)

Thus in practice 𝜏 can be obtained by the difference in Doppler shift (also the differ-

ence in received frequency) nondimensionalized by the signal carrier frequency.

𝜏𝑖1 =
1

𝑓𝑐
[𝑓𝑑𝑖 − 𝑓𝑑1] (2.10)

Then Eq. 2.6 and Eq. 2.8 can be combined to get the range rate difference 𝑟̇𝑖1 between

two receivers as a function of the FDOA 𝑓 and the assumed, known carrier frequency

𝑓𝑐. This research will refer to the FDOA as both 𝑓 (Hz) and 𝜏 , its nondimensionalized

counterpart. The next section discusses how received signals are correlated to receive

TDOA and FDOA measurements.

2.3.2.3 Complex Ambiguity Function

A suitable method for correlating signals to estimate the time and frequency dif-

ference was proposed by Stein [38]. Stein’s method of joint time/frequency difference
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estimation is based off of the complex ambiguity function (CAF), seen in Eq. 2.11,

which describes the correlation of two complex signals 𝑠1(𝑡) and 𝑠2(𝑡).

𝐴(𝜏, 𝑓) =

∫︁ 𝑇

0

𝑠1(𝑡)𝑠
*
2(𝑡+ 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (2.11)

From this function, the differential time offset (DTO) 𝜏 and differential frequency

offset (DFO) 𝑓 can be determined for a given time of integration 𝑇 . The integration

time refers to the length of the sample signal. Stein also found that greater integration

time leads to greater measurement accuracy [38]. The CAF can be integrated and

plotted over the integration time for two signals from the same source [3, 38].

Figure 9. Example output of CAF surface [5]

A 2D search can be performed to obtain the TDOA and FDOA that corresponds

to the peak CAF value. In order to ensure a distinguishable peak the input signals

must have a SNR of at least 10 dB [38]. Guo et al. [3] discusses possible methods

to increase computational efficiency of the cross ambiguity process and techniques to

resolve signals from multiple sources.
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2.3.2.4 Accuracy

The accuracy of the T/FDOA measurement depends on the integration time 𝑇 ,

signal bandwidth 𝐵𝑠, and noise bandwidth 𝐵𝑛 at receiver input [38]. Stein [38] states

that “the estimates for this method [CAF] are unbiased and have a variance that

achieves the Cramér-Rao bounds when any of several reasonable techniques is used

for identifying the apparent location of the peak.” The Cramér-Rao Lower Bound

(CRLB) for the TDOA and FDOA measurements was stated by Stein [38] as 2.12

and 2.13, respectively.

𝜎𝜏 =
0.55

𝐵𝑠

1√
𝐵𝑛𝑇𝛾𝑒

(2.12)

𝜎𝑓 =
0.55

𝑇

1√
𝐵𝑛𝑇𝛾𝑒

(2.13)

This approximation is valid for a signal integrated over time 𝑇 that has a rectan-

gular signal power density spectrum over 𝑇 . The effective input signal-to-noise ratio

𝛾 is a function of the input SNRs of the two receivers.

1

𝛾𝑒
=

1

2

[︂
1

𝛾1
+

1

𝛾2
+

1

𝛾1𝛾2

]︂
(2.14)

The TDOAmeasurement error 𝜎𝜏 is inversely proportional to the signal bandwidth

𝐵𝑠 and the FDOA measurement error 𝜎𝑓 is inversely proportional to the integration

time 𝑇 .

2.3.2.5 Advantages and Disadvantages

While TDOA and FDOA geolocation involve the complexity of a satellite cluster,

it has its advantages over AOA. The International Communications Union produced

a report in 2011 comparing TDOA and AOA geolocation methods [39]. In the past
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poor time synchronization has been a barrier to the employment of TDOA geolocation

systems, but the invention of satellite navigation systems like GPS have made it

possible to obtain more accurate time synchronization and as a result accurate TDOA

measurements [39]. Compared with AOA, T/FDOA geolocation has simpler payload

requirements. T/FDOA receivers may employ a single monopole or dipole (patch

antenna) and they do not require test and calibration [39]. Furthermore, T/FDOA

performs well for new and emerging signals that have complex modulations, wide

bandwidths, and short durations, and the processing gain from correlation allows

T/FDOA to pick up lower SNR signals [39]. On the other hand, T/FDOA has

some disadvantages compared with AOA. Firstly, narrow-band signals are difficult

to locate in a T/FDOA geolocation system [39]. As shown in Eq. 2.12 and Eq.

2.13, T/FDOA performance is sensitive to decreases in signal bandwidth. And as

previously mentioned, high cross link data rate and time synchronization requirements

are present in T/FDOA systems. One common characteristic of AOA and T/FDOA

is that they perform better on higher SNR signals with longer integration time. The

reader should see [3], [39], or [11] for a more detailed comparison.

2.4 Initial Transmitter Localization

Initial Transmitter Localization (ITL) is defined by Sinclair and Lovell [40] as

the “process of solving for the transmitter location using the minimum number of

measurements.” This research explores 6 geolocation algorithms: AOA, 3-SV TDOA

(TDOA3), 4-SV TDOA (TDOA4), 2-SV T/FDOA (TFDOA2), 3-SV T/FDOA (TF-

DOA3), and 4-SV T/FDOA (TFDOA4). These 6 algorithms are seen in Table 2. Note

that TFDOA3 and TFDOA4 are actually the same algorithm, the only difference is

the number of SVs, or in other words number of inputs.

Each algorithm requires a different number and type of measurements to estimate
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Table 2. Overview of ITL Methods Utilized

ITL
Method

# Sats Inputs
Tx

Altitude
Iteration Reference

AOA 1 𝛼𝑠, 𝜖𝑠, s1
Not

Required
No Bailey [4]

TDOA3 3
𝜏 , s1, s2,

s3
Required No

Ho and
Chan [37]

TDOA4 4
𝜏 , s1, s2,
s3, s4

Not
Required

No
Kulumani

[24], Ho and
Chan [37]

TFDOA2 2
𝜏 , 𝜏 , s1,
s2, ṡ1, ṡ2

Required No
Ho and

Chan [23]

TFDOA3 3
𝜏 , 𝜏 , s𝑖, ṡ𝑖,
𝜎𝑑𝑡𝑜, 𝜎𝑑𝑓𝑜

Preferred Yes
Ho and

Chan [23]

TFDOA4 4
𝜏 , 𝜏 , s𝑖, ṡ𝑖,
𝜎𝑑𝑡𝑜, 𝜎𝑑𝑓𝑜

Preferred Yes
Ho and

Chan [23]

a single initial transmitter location. These 6 ITL algorithms do not take into account

measurement accuracy, and with the exception of AOA, they use the minimum num-

ber of measurements required to produce an ITL solution. These ITL algorithms are

not necessarily the most computationally efficient and accurate. However they were

accessible and popular in the geolocation literature [3, 4, 8, 23, 25, 41]. Table 2 is an

overview of the ITL methods used.

ITL can be conducted for each set of measurements, and ITL solutions can be

used to initialize other estimators, as discussed in Sec. 2.5 and 3.6.

2.4.1 Angle of Arrival

Once the azimuth 𝛼 and elevation 𝜖 of arrival are measured, an LOB can be

produced describing the RF signal path from the unknown transmitter to the receiver,

ignoring atmospheric effects (Fig. 3). A single ITL solution can be achieved with a
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Figure 10. LOB can be represented in ECEF coordinates after being transformed from
azimuth, elevation, and range in the body frame
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Figure 11. Multiple LOBs can be generated in a passs over the transmitter. Sparse
LOB geometry leads to more accurate transmitter location estimates.
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single measurement by intersecting the LOB d with the Earth’s surface, as seen in

Fig. 97.

However, in a single pass over the transmitter of interest, the satellite can typically

obtain multiple signal measurements, depending on the scenario. For each azimuth

and elevation of arrival measured an LOB can be generated (Fig. 11). Recent AFT

research [4,8,41] has shown how LS intersection can be performed to obtain a trans-

mitter location û from 𝑀 LOBs. (Sec. A.1) explains the process in detail.

2.4.2 Time Difference of Arrival

There have been many different methods proposed to solve the nonlinear TDOA

geolocation problem, including those which require multidimensional searches or it-

eration by linearization ( [42], [43]). However, Ho and Chan developed a closed-form

solution to the 3 and 4 satellite TDOA geolocation problem [37]. Their algorithm is

an algebraic solution which utilizes the transmitter altitude as a constraint to improve

the location estimate. Both algorithms involve solving a polynomial equation to ob-

tain multiple solutions for the range 𝜌1 from the reference satellite to the transmitter,

then choosing the valid 𝜌1 to derive the transmitter location û. These algorithms

are derived in [37] and [23]. Kulumani [24] adapted the TDOA4 algorithm found

in [37] to avoid using Newton’s method, which Ho and Chan proposed for applying

the altitude constraint. The in-depth implementation of TDOA3 and TDOA4 for this

research is described in App. A.2.

2.4.3 Time/Frequency Difference of Arrival

In 1997, Ho and Chan [23] developed an algebraic, closed-form solution to the

combined TDOA and FDOA geolocation problem. Like the TDOA method discussed

in Sec. 2.4.2, the T/FDOA algorithm utilizes the transmitter altitude as a constraint.
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Ho and Chan [23] derive the T/FDOA solution for the case of 2 satellite geolocation

as well as a general solution for 3 or more satellites. As with Ho and Chan’s TDOA

method [37], this T/FDOA method is more computationally efficient than an exhaus-

tive grid search and does not face convergence issues present in iterative linearization

methods [23]. Unlike the TDOA3, TDOA4, and TFDOA2, the T/FDOA solution

presented in [23] for the general case (𝑆 ≥ 3) involves iteration, as applying the

altitude constraint requires a 1D Newton method search.

2.4.4 Altitude Assumption

All of the algorithms discussed incorporate some assumptions about the trans-

mitter’s position and velocity. The Ho and Chan algorithms utilized [23] are based

on the assumption of a stationary transmitter (u̇ = 0) constrained to the Earth’s

surface (u𝑇u = 𝑟2𝑒). Ho et al. [44] propose a closed-form and computationally effi-

cient solution for non-stationary transmitter localization. There are also variations

of these TDOA and T/FDOA methods that relax the known altitude and stationary

transmitter assumptions [25,45–47].

As seen in Table 2, the transmitter altitude constraint is used by all algorithms

except AOA and TDOA4 (Sec. 2.4.1). Therefore it is important to ask: which altitude

should be chosen and how does error in the altitude chosen affect the geolocation

estimate? Guo [3] and Ho and Chan [23] explore the ITL solution bias caused by

altitude error. Ho and Chan [23] give an analytical ITL solution based on the World

Geodetic System 84 Ellipsoid (WGS84) [48], and Guo [3] proposes spherical and

Newton iteration methods to obtain the appropriate transmitter altitude 𝑟𝑒 based on

WGS84.

The spherical iteration method uses the TDOA or T/FDOA algebraic solution

based on the spherical Earth model to obtain an initial transmitter location. Then
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the latitude of estimate and the WGS84 model are used to obtain a more accurate

altitude 𝑟𝑒 [3]. However, using the WGS84 Ellipsoid still includes the assumption

that the transmitter has zero altitude, which is not always true (See Sec. 2.6).

2.5 Estimation

Batch vs. Sequential Once geolocation measurements and corresponding

ITL solutions are obtained as discussed in Sec. 2.4, further methods can be used to

obtain a more optimal estimate based on the data set available. Sequential methods

like the Kalman filter have been applied to geolocation [49,50], but batch estimation

is utilized in this research to maintain continuity with recent AFIT research [4, 10].

Batch estimation was determined to be sufficient to post-process 𝑀 measurements

taken during access to the transmitter(s) and down-link geolocation coordinates [10].

Probability Density Function Each independent measurement set𝑚 taken

instantaneously at 1-4 satellites is assumed to be normally distributed with variance

𝜎2
𝑚 due to instrument and measurement algorithm (CAF, MUSIC) errors. Let m̃ be

an arbitrary measurement vector containing 𝑀 real measurements taken over a pass.

m̃ = m(u) + e𝑚

e𝑚 ≡ [𝑒1, ..., 𝑒𝑀 ]𝑇 𝑒𝑚 ∼ 𝑁(0, 𝜎𝑚)

(2.15)
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In Sec. 2.3 the measurement models describe how m is a nonlinear function of the

transmitter location u.

m(u) =

[︂
𝑚1 . . . 𝑚𝑀

]︂𝑇
=

[︂
𝛼1 𝜖1 . . . 𝛼𝑀 𝜖𝑀

]︂𝑇
(𝐴𝑂𝐴)

=

[︂
𝜏1 𝜏2 . . . 𝜏𝑀

]︂𝑇
(𝑇𝐷𝑂𝐴3)

=

[︂
𝜏1 𝜏1 . . . 𝜏𝑀 𝜏𝑀

]︂𝑇
(𝑇𝐹𝐷𝑂𝐴2)

(2.16)

Observe that m(u) is the expected value of m̃.

𝐸[m̃] = 𝐸[m(u)] + 𝐸[e𝑚] = m(u) (2.17)

The joint probability density function (PDF) shown in Eq. 2.18 describes the proba-

bility of having obtained the 𝑀 measurements given the transmitter location u [51].

𝑓(m̃|u) = (2𝜋)−𝑀/2

[︃
𝑀∏︁
𝑖=1

𝜎−1
𝑖

]︃
exp

{︃
−

𝑀∑︁
𝑖=1

[𝑚̃𝑖 −𝑚(u)]2

2𝜎2
𝑖

}︃
(2.18)

2.5.1 Principle of Maximum Likelihood

The optimal estimate û is the one that maximizes the PDF in Eq. 2.18, or in

other words, the one that maximizes the probability of having obtained the actual

measurements. This concept is called the Principle of Maximum Likelihood [51].

Maximum Likelihood Estimation (MLE), introduced and popularized by R. A. Fisher

in 1912, is the most widely used method of estimation in statistics [52]. Bailey [4]

utilized MLE for the single-satellite AOA geolocation problem. Ren et al. [53] and

Hale [15] show how MLE can be applied to the T/FDOA problem. This û𝑀𝐿𝐸 is

unconstrained, meaning it does not constrain the estimate to the Earth’s surface.

Cao et al. [46] utilize a constrained MLE algorithm for T/FDOA which minimizes
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the receiver location and measurement error. This research applies an unconstrained

MLE to AOA, TDOA, and T/FDOA geolocation which minimizes the measurement

error, as done by Bailey [4], Ren et al. [53] and Hale [15].

To understand how the ML estimate is conceived, first consider the conditional

probability density function 𝑓(m̃|u) from Eq. 2.18. 𝑓(m̃|u) is maximized when the

magnitude of the term within the exponential operator is minimized.

û𝑀𝐿𝐸 = arg max
u

{𝑓(m̃|u)} = arg min
u

{︃
𝑀∑︁
𝑖=1

(𝑚̃𝑖 −𝑚(u))2

𝜎2
𝑖

}︃
(2.19)

This equation for the ML estimator can be rewritten in matrix form.

û𝑀𝐿𝐸 = arg min
u

{︀
[m̃−m(u)]𝑇Q−1

𝑚 [m̃−m(u)]
}︀

Q𝑚 ≡ diag[𝜎2
1, ..., 𝜎

2
𝑀 ]

(2.20)

Due to the nonlinearity of m(u) and the weighting matrix Q−1
𝑚 , Eq. 2.20 is called

a nonlinear weighted least squares minimization problem, which is an extension of

basic least squares estimation.

2.5.2 Least Squares Estimation

The method of least squares involves minimizing the squared differences between

the observed measurements and the expected values [54]. The least squares estimate

û𝐿𝑆 can be defined as the value which minimizes Eq. 2.21.

𝑀∑︁
𝑖=1

[𝑚̃𝑖 −𝑚(u)]2 (2.21)

Linear Least Squares If the function 𝑚(u) is linear, then there is a matrix

A that maps u into the measurement space, and the new least squares estimate can
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be defined as

û𝐿𝑆 = arg min
u

{︃
𝑀∑︁
𝑖=1

(𝑚̃𝑖 −Au)2

}︃
(2.22)

Strang [55] derives the solution for this linear least squares problem Eq. 2.23.

(A𝑇A)−1A𝑇 is known as the Moore-Penrose pseudoinverse of A [55].

û𝐿𝑆 = (A𝑇A)−1A𝑇m̃ (2.23)

Weighted Least Squares In reality, not all measurements have the same

amount of uncertainty. In the linear least squares method shown above, each mea-

surement carries an equal weight. Weighted least squares (WLS) attempts to weight

each measurement according to its corresponding variance 𝜎2
𝑚 [51]. The weighted

least squares estimator is given by [54]

û𝑊𝐿𝑆 = arg min
u

{︃
𝑀∑︁
𝑖=1

(𝑚̃𝑖 −Au)2

𝜎2
𝑖

}︃
(2.24)

Equation Eq. 2.24 can be written in matrix form , similar to Eq. 2.20.

û𝑊𝐿𝑆 = arg min
𝑥

{︀
[m̃−Au)]𝑇Q−1

𝑚 [m̃−Au]
}︀

(2.25)

The solution to the weighted least squares problem Eq. 2.25 is [56]

û𝑊𝐿𝑆 = (A𝑇Q−1
𝑚 A)−1A𝑇Q−1

𝑚 m̃ (2.26)

Nonlinear Weighted Least Squares The only difference between weighted

least squares and nonlinear weighted least squares (NWLS) is that the function 𝑚(u)

is nonlinear, thus

𝑚(u) ̸= Au (2.27)
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Therefore Eq. 2.24 becomes

û𝑁𝑊𝐿𝑆 = arg min
u

{︃
𝑀∑︁
𝑖=1

[𝑚̃𝑖 −𝑚(u)]2

𝜎2
𝑖

}︃
(2.28)

which resembles the maximum likelihood estimate shown in Eq. 2.19.

2.5.3 Gauss-Newton Algorithm

The Gauss-Newton algorithm is an iterative method useful for solving the non-

linear least squares problem shown in Eqs. 2.19 and 2.28 [57]. First note that the

nonlinear function𝑚(u) can be approximated with the first-order Taylor series, where

û𝑘 is a known value close to u.

𝑚(u) ≈ 𝑚(û𝑘) +𝑚′(û𝑘)(u− û𝑘) (2.29)

If the difference between u and û𝑘 is sufficiently small, then the first order approximate

is accurate. In the NWLS problem, u is unknown. The Gauss-Newton method

involves redefining the unknown u as the new estimate û𝑘+1 and iterating to a specified

tolerance [57].

𝑚(u𝑘+1) ≈ 𝑚(û𝑘) +𝑚′(û𝑘)(û𝑘+1 − û𝑘)

||û𝑘+1 − û𝑘|| ≤ 𝑡𝑜𝑙

𝑚′(u) ≡ 𝜕𝑚

𝜕u
= J𝑚(u) = J

(2.30)

J describes how the true measurement changes with respect to change in transmitter

location. The Gauss-Newton method is capable of quadratic convergence in the best

case, given an initial condition û0 that is relatively close to the truth. If Eq. 2.29 is

converted to vector form and substituted into Eq. 2.20 for m(u) then the expanded

33



equation is

û𝑀𝐿𝐸 = arg min
u

{︁
[m̃− (m(û𝑘) + J(u− û𝑘))]

𝑇 Q−1
𝑚 [m̃− (m(û𝑘) + J(u− û𝑘))]

}︁
(2.31)

To simplify further,

û𝑀𝐿𝐸 = arg min
u

{︁
[m̃−m(û𝑘) + Jû𝑘 − Ju]𝑇 Q−1

𝑚 [m̃−m(û𝑘) + Jû𝑘 − Ju]
}︁
(2.32)

For simplicity combine known parameters into y:

y = m̃−m(û𝑘) + Jû𝑘 (2.33)

û𝑀𝐿𝐸 = arg min
u

{︁
[y − Ju]𝑇 Q−1

𝑚 [y − Ju]
}︁

(2.34)

This equation resembles the weighted linear least squares problem (Eq. 2.25) whose

solution (Eq. 2.26) can be rewritten as [56]

û𝑀𝐿𝐸 = (J𝑇Q−1
𝑚 J)−1J𝑇Q−1

𝑚 y (2.35)

Now û𝑀𝐿𝐸 is conveniently described by known parameters. û𝑀𝐿𝐸 can be defined as

the updated estimate û𝑘+1, and the new iterative equation with y expanded becomes

û𝑘+1 = (J𝑇Q−1
𝑚 J)−1J𝑇Q−1

𝑚 (m̃−m(û𝑘) + Jû𝑘) (2.36)

After multiplying the terms out and simplifying, the final iterative equation is

û𝑘+1 = û𝑘 + (J𝑇Q−1
𝑚 J)−1J𝑇Q−1

𝑚 [m̃−m(û𝑘)]

||û𝑘+1 − û𝑘|| ≤ 𝑡𝑜𝑙

(2.37)
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The final û𝑘+1 after convergence is the estimate for the transmitter location that

minimizes the collective geolocation measurement error.

2.5.4 Estimate Confidence

For Gaussian distributed estimates, the covariance or confidence is described as

the inverse of the Fisher Information Matrix F [58].

C𝑀𝐿𝐸 = F−1 = (J𝑇Q−1
𝑚 J)−1 (2.38)

The confidence region can be expressed graphically as an ellipsoid for the 3D problem.

The ellipsoid is centered at û𝑀𝐿𝐸. The eigenvectors of C𝑀𝐿𝐸 determine the direction

of the ellipsoid axes and the eigenvalues 𝜆𝑖 represent the lengths of the axes.

It is important to achieve a desired confidence level for û𝑀𝐿𝐸, and the ellipsoid

should be scaled appropriately to reflect that level of confidence. The scale factor 𝜒

is multiplied by the square of the eigenvalues of C𝑀𝐿𝐸 to appropriately resize C𝑀𝐿𝐸.

This can be expressed as

𝜆′𝑖 = 𝜒2𝜆𝑖 (2.39)

If the number of degrees of freedom and the desired level of confidence is known, a

Chi-squared distribution can be used to calculate 𝜒2. In the 3D case, to achieve 95%

confidence that û𝑀𝐿𝐸 is within the ellipsoid, 𝜒2 = 7.815.

2.6 Digital Elevation Models

Finally, accurate geolocation requires a robust definition of the surface of the

Earth. The Spherical Earth and WGS84 Ellipsoid models were discussed in Sec. 2.4.4.

The last type of surface used in this research, Digital Elevation Models (DEM), is

discussed in this section. Digital Elevation Model (DEM) refers to any digital terrain
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or surface model, regardless of the complexity. Thanks to modern geoscience, more

accurate DEMs have been produced, benefiting a variety of civilian and military

sectors [59].

Shuttle Radar Topography Mission The first near-global set of land el-

evations was enabled by the Shuttle Radar Topography Mission (SRTM) [60]. SRTM

[59], a joint effort of NASA, the National Geospatial-Intelligence Agency (NGA), and

the Italian and German Space Agencies, was an 11-day mission flown aboard the space

shuttle Endeavor in February 2000 that used radar to gather information about the

Earth’s environment [59,60]. SRTM “produced the most complete, highest-resolution

digital elevation model of the Earth” [59].

Digital Terrain Elevation Data The NGA used data obtained by SRTM

to develop a standard of digital datasets referred to as Digital Terrain Elevation

Data (DTED R○) [61]. There are 3 levels of DTED resolution: level 0, 1, and 2. The

DTED resolution is defined by the latitudinal and longitudinal area occupied by each

elevation post. The National Imagery and Mapping Agency’s DTED performance

specification [9] defined the resolution of each DTED level.

Table 3. DTED Post Sizes (Adapted from [8,9])

Position on Earth
DTED Level 0 DTED Level 1 DTED Level 2

Post Size (arc-seconds, 1 arc-second ≈ 30 m)

Latitude N/S (deg) lat lon lat lon lat lon

0-50 30 30 3 3 1 1

50-70 30 60 3 6 1 2

70-75 30 90 3 9 1 3

75-80 30 120 3 12 1 4

80-90 30 180 3 18 1 6

There are various methods of obtaining DEMs. The U.S. Geological Survey
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(USGS) provides 3 arc-second and 1 arc-second SRTM data which can be down-

loaded in DTED format [62]. These datasets are referred to as DTED1 and DTED2

throughout this thesis.

Global Multi-resolution Terrain Elevation Data 2010 The Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) model, produced jointly NGA

and USGS, used the best available data from various sources to produce elevation data

at three different resolutions of 30, 15, and 7.5 arc-seconds (about 1000, 500, 250 me-

ters) [63]. GMTED2010 draws from DTED, USGS DEMs, and even international

data sources to provide a worldwide surface model. The mean elevations contained

in GMTED2010 have a global root mean square error (RMSE) of 26.72 m [63].

DEM Reference For each of these products, the digital elevations are verti-

cal heights 𝐻 in meters referenced from the Earth Gravitational Model (EGM96) [6].

The EGM96, or Geoid, was a DEM developed in 1996 that is used in most military

simulations as a reference for zero elevation or mean sea level (MSL) [6]. The Geoid

differs from the WGS84 Ellipsoid by as much as 100 m [6]. While vertical DEM

datum are referenced to the Geoid, in most advanced DEMs the elevation posts are

horizontally referenced by the WGS84 geodetic latitude and longitude.

Figure 12. The geoid, a reference ellipsoid, and terrain [6]
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In practice, elevation data can be converted to WGS84 Ellipsoid height for altitude

calculations. For each post, the elevation 𝐻 can be added to the Geoid height 𝑁 at

the post’s latitude and longitude, which typically requires interpolation.

ℎ = 𝐻 +𝑁 (2.40)

DEM Application Schmidt [8] used DTED1 and DTED2 to further refine

ITL solutions obtained via TDOA and AOA geolocation algorithms. He utilized a

grid search to choose an elevation post for the geolocation estimate based on figures

of merit [8]. This research will utilize 30-arcsecond GMTED2010 in ITL calculations.

Furthermore, USGS 3-arcsecond SRTM data (DTED1) will be used to execute a grid

search similar to that in [8] to obtain better accuracy.

2.7 Summary

This chapter has described the current progress in the space-based RF geolocation

effort and surveyed the principles behind the geolocation problem. These principles

included CubeSat design limitations, formation flying, signal measurement, initial

transmitter localization (ITL), estimation, estimate fusion, and application of digital

elevation models. The next chapter, Methodology, will explain how these principles

are applied to accomplish the geolocation analysis and answer the research questions.
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3. Methodology

The primary method of answering the research question was developing an end-to-

end simulation of 1-4 CubeSats geolocating a fixed-site Air Route Surveillance Radar.

This chapter describes the methods and tools used to produce the simulation. Sec-

ondly, the chapter explains the measures of performance (MOPs) which are numerical

quantities used in Chapters 4 and 5 to assess, compare and contrast results.

3.1 Overview

An overview of the geolocation simulation can be seen in Fig. 13. The structure

of this chapter will resemble the flow of this diagram.

Simulation overview

Use MATLAB-STK interface script to 1) adjust SV 

and Tx locations,  2) propagate SVs, and 3) compute 

access (4 SVs to Tx) during 1 pass

M times of access (measurements)

M SV positions

M SV velocities

Determine System Parameters (Sec. 3.2)

1) Create Scenario in STK ® (4 SVs, 1 Tx)

2) Input parameters in MATLAB®

Any 

method

Use AOA, TDOA, and FDOA measurement models to 

generate true measurements (Sec. 3.4.1)

Corrupt measurements and SV positions and 

velocities with Gaussian noise (Secs. 3.4.2, 3.5.1)

Initial Transmitter Localization (ITL):

Execute AOA, TDOA, or T/FDOA M times for M 

measurements  (Sec. 3.5)

Least Squares Intersection

Maximum Likelihood Estimation: Solve NWLS 

Problem using Gauss-Newton Algorithm (Sec. 3.6)

M TDOA and 

T/FDOA location 

estimates

M lines of bearing for 

AOA algorithm

Fusion: Fuse MLEs and Confidence Ellipsoids from 2 

different algorithms (optional)

1 ML estimate and 95% 

confidence ellipsoid for each 

algorithm

1 fusion estimate and 95% 

confidence ellipsoid

Apply DTED1 Constraint: Search for elevation post 

that minimizes original measurement error (Sec. 3.7)

Final geolocation estimate u = [x y z]

In STK

Figure 13. Overview of STK-MATLAB Geolocation Simulation
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3.2 System Parameters

This section discusses the input parameters (Table 4) needed for the geolocation

simulation, some of which remain constant and others of which are varied, depending

on the scenario.

Table 4. Simulation Input Parameters

Orbit and Cluster SV Payload

Chief altitude (km) Receiver Gain (dB)

Chief inclination (deg) Integration Time (s)

Chief longitude of the ascending node (deg) # Samples per collect

Chief argument of latitude (deg)

Chief orbit epoch (date/time)

Baseline distance (km) Error (1-𝜎)

Angle measurement (deg)

Transmitter DTO measurement (s)

Latitude (deg) DFO measurement (Hz)

Longitude (deg) Absolute SV Position (m)

Altitude (m) Absolute SV Velocity (m/s)

Transmit Frequency (Hz) Relative SV Position (m)

Transmit Power (W) Relative SV Velocity (m/s)

Transmit Gain (dB) SV attitude knowledge (deg)

Transmit Bandwidth (Hz) Timing synchronization (s)

Beam Pattern (Sweep, Constraints) Frequency synchronization (Hz)

3.2.1 Transmitter Characterization

Type An RF transmitter with an isotropic beam pattern was primarily uti-

lized throughout this research. So it was assumed that whenever the SVs were within

line of sight of the transmitter a signal could be collected, with a minimum eleva-

tion angle of 5∘. A signal collect is defined as a discrete instance where all SVs in

the cluster receive the same signal of interest. So for a 3-SV TDOA system, there
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are 𝑀 discrete collects for a single pass, and each collect includes 2 time difference

measurements (𝜏21, 𝜏31). An isotropic transmitter was chosen for generality, not for

realism. In Chapter 5, where the system level performance is analyzed, a radar signal

of interest was also simulated to add a realistic scenario and observe how much the

radar beam constraints affected signal collection and subsequently geolocation accu-

racy. The radar simulated was an Air Route Surveillance Radar Series 4 (ARSR-4).

Its properties are seen in Table 5. The isotropic transmitter was assumed to have

the same transmit frequency as in Table 5, but as previously discussed, there were no

beam constraints.

Table 5. ARSR-4 Signal Characteristics [10]

Parameter Value Unit

Transmit Frequency 1315 MHz

Bandwidth 100 MHz

Transmit Power 6.5 kW

Transmit Gain 45 dB

Azimuth Spinning 5 RPM

Beam Elevation 5-35 deg

Beam Width 1.5 deg

Location The simulated transmitter locations were arbitrary, but locations

with varied latitude and altitude were chosen so the effects of the oblateness of the

Earth and the elevation of the transmitter could be studied. Furthermore, locations

in the center of 1× 1∘ DTED grids were chosen so that only one DTED file would be

required for analysis.

Altitude The altitude for each of the transmitters was defined from the level

2 DTED obtained from USGS (See App. B.1). While the DTED2 surface does not
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Table 6. Transmitter Locations

Tx Latitude (deg) Longitude (deg)
Altitude

(WGS84 height, m)

1 0.5011 100.4989 104.29

2 15.5011 100.4989 25.80

3 30.5011 100.4989 3968.68

4 45.5011 100.4989 1386.62

5 58.5011 100.4989 173.00

N (Geoid Height)

True Geoid

True 

Terrain
DTED2 Post (H)

~30 m

Geoid 

post (N)

= Chosen True Tx Altitude

= Errors Present in True Tx

Geoid Interpolation

Figure 14. Defining the true transmitter altitude using DTED2 posts
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represent truth, it was high enough resolution ( 30 m) for this research.

A single post near the center of the 1×1∘ DTED2 grid was chosen, and the latitude

and longitude of that post was used for the transmitter. Using the DTED2 post

altitude was preferred over choosing a latitude and longitude and interpolating the

DTED2 surface for altitude. Such interpolation could lead to additional inaccuracy

depending on the interpolation method, as seen in Fig. 14. Ultimately, the DTED2

post elevation error and Geoid interpolation error were the only uncertainties present

in the chosen transmitter altitudes.

3.2.2 Orbit Selection

Some, but not all of the orbit design choices were relevant to this research, so

selections were made that would maintain continuity with AFIT SV design research.

For this analysis the simulation only runs for a single pass, therefore drag, pertur-

bations, and multi-pass geolocation are not considered. However, the geolocation

simulation can be initialized with any set of measurements, meaning other mission

orbits and multiple passes can be used as long as measurements and corresponding

receiver positions and velocities are obtained.

Number of SVs The number of SVs influences the type of ITL algorithm

that can be used to geolocate the transmitter. A trade space of 1-4 SVs was chosen

since beyond 4 SVs there is no variation in the algorithms chosen, and it is assumed

more measurements implemented with the same algorithms would produce a more

accurate ITL solution.

Altitude and Inclination CubeSats tend to operate in LEO due to payload

size, weight, and power limitations, as well as radiation threats posed by the Van Allen

belts [64]. Thus an upper bound of 1000 km was chosen for the trade space of SV
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altitudes. The lowest altitude explored was 350 km due to the high amount of Δ𝑉

required for station-keeping below that altitude [64]. The default altitude was set

to 500 km to maintain continuity with AFIT SV design research. All orbits were

circular, and while the inclination was arbitrary, 64∘ was chosen for continuity with

recent AFIT research.

Pass Geometry A pass is defined in this research as the time during which

the SVs (or SV) are within line of sight of the transmitter. A pass begins when

the SVs rise above the horizon and ends when the SVs fall below the horizon, with

an assumed minimum elevation angle of 5∘. During a pass 𝑀 signal collects are

obtained by the SV(s). This research assumes that only a single pass is achievable for

a given transmitter, meaning the 𝑀 collects from that pass are the only data used

for on-board geolocation.

Isotropic 

Tx

1

2

3

4

5

Figure 15. SV Pass Geometry for Isotropic Transmitter
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2

3

4

5

Radar

Figure 16. SV Pass Geometry for Radar

While it was assumed only one pass over the unknown transmitter was achievable,

5 different pass types were chosen to observe the effect of collection geometry on

geolocation accuracy. These passes ranged from overhead passes (1) to passes closer

to the horizon (5). These passes were simulated independently, the 𝑀 signal collects

did not accumulate for the 5 passes. Fig. 15 shows the pass types simulated for the

isotropic transmitter and Figure 16 contains the pass types for the sweeping radar.

Both figures display the SV ground tracks for each pass.

3.2.3 Cluster Design

The goal of cluster design was to not to optimize cluster geometry for TDOA and

FDOA collection, but rather to create a few baseline geometries useful for comparison.
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Table 7. Chief SV Orbital Elements for All Passes

Radar
Pass

Type
LAN (deg) Arg. Lat (deg)

1

1 100.1 0.9

2 105 0.9

3 109 0.9

4 113 0.9

5 117 0.9

2

1 93.9 16.6

2 99 16.6

3 103 16.6

4 107 16.6

5 111 16.6

3

1 86.1 34.5

2 91.2 34.5

3 96.2 34.5

4 101.2 34.5

5 106.2 34.5

4

1 74.6 52.6

2 79.4 52.6

3 85.4 52.6

4 91.4 52.6

5 97.4 52.6

5

1 48.8 74.7

2 58.8 74.7

3 68.8 74.7

4 78.8 74.7

5 88.8 74.7

Constants: Alt. 500 km, Inc. 64∘ ( [10]), Orbit
epoch at 1 Jan 2017 at 12:00:00 UTC
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Formation Type For the duration of a pass over the transmitter, geomet-

ric diversity of the cluster is optimal for accurate TDOA and T/FDOA geolocation

estimates [14]. Though some geometrically diverse formations like Natural Motion

Circumnavigation (NMC) [14] exist, a simpler formation similar to Non-Coplanar

Oscillator was chosen. The formation used in this research (Fig. 17) features the first

two SVs in the same plane and the third and fourth SVs in a plane with a slightly

different inclination and/or right ascension of the ascending node (RAAN).

1

z

Plane 2

(𝛿Ω, 𝛿i)

2

3

4

Tx

Plane 1

y

Velocity 

directionΔb

Δb

Figure 17. Cluster formation in HCW frame (not to scale)

Baseline Distance The last element of the cluster design is baseline dis-

tance, or separation between two SVs. In order to keep cluster geometry as constant

as possible across different passes, a fixed separation distance was chosen for each

scenario. Large baselines can make it difficult for all SVs to collect the same RF

signal, depending on the transmitter beam pattern. For the chosen spinning ARSR-4

radar with beam azimuth of 1.5∘, a baseline of greater than 15 km would make it
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highly unlikely for all 4 SVs to collect the same radar pulse. It’s also important to

reiterate that this research assumes all the SVs have hardware capable of detecting

and correlating the transmitter signal.

Figure 18. 4 SVs orbiting within range of a sweeping radar with finite beamwidth

On the other hand, small baseline distance is unfavorable for TDOA and T/FDOA

geolocation accuracy. The trade space for baseline distance was chosen to be between

1 km and 30 km, and the default was chosen as 15 km.

Cluster Formation The goal was to standardize the cluster formation as

much as possible, including baseline and geometry. Thus for each pass, a reference

time 𝑡0 was defined as the middle of a pass, or when the sub-satellite point was closest

to the target transmitter. At that reference point the cluster was formulated with

the baseline and geometry seen in Fig. 17, assuming that variations to the geometry

would be minimal throughout the duration of a pass. For each pass simulated the

relative geometry was plotted in the HCW frame to observe how it changed (Fig. 19).

1. Determine the baseline distance Δ𝑏 for the scenario.

2. Set Chief SV orbit for the current pass using the parameters from Sec. 3.2.2.
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3. Define SV 2 in the same plane as the chief but following at the baseline distance

(leader-follower). This results only in a change of phase 𝛿𝜃, where 𝑎 is the

semimajor axis of the chief.

𝛿𝜃 =
Δ𝑏

𝑎1
(3.1)

4. Define SV 3 in a separate plane from the chief. Use the approximation of the

HCW equation approximations (Eq. 2.2) [2] to space SV 3 Δ𝑏 in the cross-track

direction 𝑧 at the reference time 𝑡0.

𝑥 = 𝛿𝑟 (3.2)

𝑦 = 𝑟1(𝛿𝜃 + 𝛿Ωcos 𝑖1) (3.3)

𝑧 = 𝑟1(𝛿𝑖 sin 𝜃1 − 𝛿Ω sin 𝑖1 cos 𝜃1) (3.4)

(a) For SV 3 the relative radial and in-track components are set to 0 (𝑥 = 𝑦 =

0), and only the cross-track 𝑧 is varied.

(b) Set 𝑧 = Δ𝑏. Then for an array of possible 𝛿Ω, use Eq. 3.4 to find a

corresponding array of 𝛿𝑖.

(c) Choose the 𝛿Ω − 𝛿𝑖 pairing which minimizes baseline change over a pass.

This usually translates to smaller 𝛿𝑖 at lower latitudes and larger 𝛿𝑖 at

higher latitudes.

(d) Then solve Eq. 3.3 for 𝛿𝜃 with the new 𝛿Ω and 𝑦 = 0.

5. Define SV 4 as in Step 3, where SVs 3-4 are in a leader follower formation

analogous to SVs 1-2.

The relative SV geometry was plotted in the Hill frame to observe how it deviated

over the course of a pass (Fig. 19). Similarly, data about the baseline between each
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of the SVs for each pass was obtained (Table 8).

-505101520

Z = Cross-Track (km)

-20

-15

-10

-5

0

5

Y
 =

 I
n

-T
ra

c
k
 (

k
m

)
SV1 (chief)

SV2

SV3

SV4

Figure 19. Relative SV Geometry in HCW Frame for Tx 1, Pass 1, Baseline 15km

It is important to note that in Fig. 19, although SVs 1 and 2 are coplanar, there

is still some nonzero cross-track offset for SV 2. The actual SV2 cross-track offset in

Fig. 19 is −15𝑚. After further investigation it was determined that the slight offset

of the orbital planes is due to the imprecision of the MATLAB Object Model code

used to establish the SV orbits in STK. If the orbits were manually defined in STK

there would be no offset present.

3.3 Propagation

Systems Tool Kit The propagation of the SV orbits was executed in Sys-

tems Tool Kit (STK), an application developed by Analytical Graphics, Inc. Other

tools including MATLAB can be used for the orbit propagation component of the

simulation, however STK was used for this research to maintain continuity with the

AFIT SV design sequence and to make geolocation scenario changes simpler due to

STK’s graphical user interface.
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Table 8. Baseline Data for All Passes (Δ𝑏 = 15𝑘𝑚)

Tx Pass
SV 2 Baseline SV 3 Baseline SV 4 Baseline

Mean 𝜎 Mean 𝜎 Mean 𝜎

1

1 14.592 0.002 15.032 1.129 20.477 0.749

2 14.592 0.002 15.098 0.938 20.522 0.626

3 14.593 0.002 15.155 0.782 20.560 0.523

4 14.593 0.002 15.248 0.573 20.621 0.385

5 14.593 0.002 15.333 0.394 20.679 0.261

2

1 14.590 0.007 14.963 3.128 20.497 2.033

2 14.591 0.006 15.184 2.853 20.639 1.873

3 14.591 0.006 15.340 2.576 20.739 1.706

4 14.592 0.005 15.531 2.233 20.862 1.493

5 14.592 0.004 15.757 1.741 21.009 1.179

3

1 14.585 0.011 15.072 6.098 20.772 3.978

2 14.585 0.011 15.507 5.769 21.049 3.828

3 14.586 0.010 15.952 5.256 21.334 3.551

4 14.587 0.009 16.238 4.674 21.514 3.199

5 14.588 0.007 16.721 3.680 21.828 2.570

4

1 14.577 0.011 15.137 11.669 21.355 7.567

2 14.578 0.012 15.766 11.487 21.751 7.629

3 14.579 0.011 16.757 10.826 22.375 7.460

4 14.580 0.011 17.729 9.821 22.999 7.001

5 14.580 0.009 18.450 8.226 23.451 6.022

5

1 14.570 0.007 14.381 3.933 20.315 2.974

2 14.571 0.008 13.773 4.331 19.868 3.150

3 14.572 0.009 13.092 4.695 19.388 3.273

4 14.573 0.009 12.580 4.670 19.026 3.158

5 14.574 0.008 12.224 4.177 18.760 2.775

Note: All baseline means and std. devs. given in km
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Implementation The purpose of using STK was to generate𝑀 SV positions

and velocities Eq. 3.5 during a single pass over the transmitter. Note that the

MATLAB portion of the geolocation simulation only requires the inputs in Eq. 3.5

during access to the transmitter, so the method of obtaining these inputs is irrelevant.

One could generate their own S𝑀×3 and Ṡ𝑀×3 and transmitter characteristics and

move on to Sec. 3.4.

S𝑀×3 =

⎡⎢⎢⎢⎢⎣
s1
...

s𝑀

⎤⎥⎥⎥⎥⎦ Ṡ𝑀×3 =

⎡⎢⎢⎢⎢⎣
ṡ1
...

ṡ𝑀

⎤⎥⎥⎥⎥⎦ (3.5)

While only two body orbit propagation was required for the scope of this thesis,

J2 perturbation effects were simulated in STK to account for the oblateness of the

Earth. Once a scenario was established in STK, a MATLAB interface script con-

taining Object Model and Connect commands was used to define SV orbits, cluster

formation, and transmitter location, propagate the SVs in time, compute access from

all 4 SVs to the transmitter for the duration of one pass, and export S𝑀×3 and Ṡ𝑀×3

directly from STK to MATLAB.

3.4 Signal Measurement

Once S𝑀×3 and Ṡ𝑀×3 were imported to MATLAB, true measurements were gen-

erated using the AOA, TDOA, and FDOA measurement models found in Sec. 2.3.

The measurements were assumed to be taken at𝑀 instants in time. Integration time

was considered to determine the CRLB for the TDOA and FDOA measurements as

seen in Eq. 2.12 and Eq. 2.13, but the change in s𝑚 and ṡ𝑚 during integration time

was considered negligible. Additionally, it was assumed that all signals received had a

sufficient SNR to be processed. This assumption is validated for this research scenario

by [10].
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Determining the actual measurements based on simulated payload hardware and

signal propagation was outside the scope of this research. However for future work

the framework is established within the simulation to include a signal measurement

algorithm, like MUSIC for example, to simulate real measurement.

3.4.1 True Measurements

This section contains the equations used to generate true AOA, TDOA, and FDOA

measurements as referenced in Sec. 2.3. For each model the set of measurements m

are nonlinear functions of the transmitter position u, SV(s) position s, and SV(s)

velocity ṡ if applicable. For convenience, the convention m(u) will be used. m

represents 𝛼, 𝜖, 𝜏 , or 𝜏̇ depending on whether you are obtaining AOA, TDOA, or

FDOA.

m = m(u, s𝑖, ṡ𝑖) 𝑖 = 1, 2, ..., 𝑆 (3.6)

AOA The process for obtaining the 𝛼𝑠 and 𝜖𝑠 of arrival in the sensor frame

given u and s is detailed in this section.

1. The SV position s is first transformed from ECEF to geodetic latitude, lon-

gitude, and ellipsoid height using MATLAB function ecef2geodetic. Latitude

ranges from [−90∘, 90∘], with origin at the equator. Longitude ranges from

[−180∘, 180∘], with origin at the Prime Meridian.

2. Determine the LOB vector d referenced from the SV to the transmitter in ECEF

coordinates.

d𝐸𝐶𝐸𝐹 = u− s (3.7)

3. Transform the LOB unit vector d̂𝐸𝐶𝐸𝐹 into local East-North-Up (ENU) coor-
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Figure 20. The relationship between various Earth surfaces (highly exaggerated) and
a depiction of the ellipsoidal parameters [7]

Figure 21. Two types of ECEF coordinates and their interrelationship [7]
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Figure 22. Two types of ECEF coordinates and their interrelationship [7]

dinates using the SV geodetic latitude 𝜑 and longitude 𝜆 [7].

d̂𝐸𝑁𝑈 =

⎡⎢⎢⎢⎢⎣
− sin𝜆 cos𝜆 0

− cos𝜆 sin𝜑 − sin𝜆 sin𝜑 cos𝜑

cos𝜆 cos𝜑 sin𝜆 cos𝜑 sin𝜑

⎤⎥⎥⎥⎥⎦ d̂𝐸𝐶𝐸𝐹 (3.8)

4. Obtain the azimuth and elevation angles in the local ENU frame.

𝛼𝐸𝑁𝑈 = tan−1

(︃
𝑑𝑒

𝑑𝑛

)︃
𝛼𝐸𝑁𝑈 ∈ [0, 2𝜋]

𝜖𝐸𝑁𝑈 = tan−1

⎛⎝ 𝑑𝑢√︁
𝑑2𝑒 + 𝑑2𝑛

⎞⎠ 𝜖𝐸𝑁𝑈 ∈ [−𝜋/2, 𝜋/2]
(3.9)

5. Transform azimuth and elevation in local ENU into the body frame. For this

research 𝜑𝑛 is assumed to be 0 during SV motion for simplicity’s sake.
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Figure 23. 𝛼 and 𝜖 defined in the local East-North-Up coordinate frame
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Figure 24. 𝛼 and 𝜖 defined in the SV body frame
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Figure 25. North angle 𝜑 referenced from the local ENU frame to SV body frame
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𝛼𝑏 = 𝛼𝐸𝑁𝑈 − 𝜑𝑛 𝛼𝑏 ∈ [0, 2𝜋]

𝜖𝑏 = −𝜖𝐸𝑁𝑈 𝜖𝑏 ∈ [−𝜋/2, 𝜋/2]
(3.10)

6. Obtain the azimuth and elevation in the sensor frame. For this research the

sensor frame is assumed to be aligned with the body frame for simplicity. In

the case this assumption is removed, a simple rotation matrix can be applied

to transform 𝛼𝑏, 𝜖𝑏 into 𝛼𝑠, 𝜖𝑠.

𝛼𝑠 = 𝛼𝑏 𝛼𝑠 ∈ [0, 2𝜋]

𝜖𝑠 = 𝜖𝑏 𝜖𝑠 ∈ [−𝜋/2, 𝜋/2]
(3.11)

For an entire pass of 𝑀 measurements Eq. 3.12 shows the resulting angle vectors

produced.

𝛼𝑠 =

[︂
𝛼1 . . . 𝛼𝑀

]︂𝑇
𝜖𝑠 =

[︂
𝜖1 . . . 𝜖𝑀

]︂𝑇
(3.12)

TDOA For 𝑆 SVs the time difference measurement 𝜏𝑖1 between the chief and

each other SV is obtained via Eq. 2.5, resulting in

𝜏𝑀×𝑆−1 =

⎡⎢⎣𝜏21 . . . 𝜏𝑆1
...

...
...

⎤⎥⎦ (3.13)

FDOA For 𝑆 SVs the nondimensionalized frequency difference measure-

ments 𝜏𝑖1 are obtained using Eq. 2.6 through Eq. 2.10.

𝜏̇𝑀×𝑆−1 =

⎡⎢⎣𝜏21 . . . 𝜏𝑆1
...

...
...

⎤⎥⎦ (3.14)
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3.4.2 Corrupted Measurements

Sec. 2.3 discusses the inaccuracy associated with geolocation measurements due

to MUSIC, CAF, and realistic payloads. This research corrupts the true measure-

ments using Gaussian random variable 𝑋. All random errors 𝑒 are assumed to have

normal distributions with standard deviations 𝜎 and means centered at the true mea-

surements.

𝑚̃ = 𝑚+ 𝑒𝑚

𝑒𝑚 = 𝑋𝜎𝑚 𝑋 ∈ 𝒩 (0, 1)

(3.15)

Note that subscripts of 𝑋 will be used to signify different realizations of the random

variable 𝑋.

Corrupted 𝛼 and 𝜖 The error in AOA measurement is comprised of MUSIC

algorithm error, payload antenna calibration error, and SV attitude knowledge error.

The angle measurement error due to the payload receiver and the MUSIC algorithm

is assumed to be normally distributed with standard deviation 𝜎𝛼 and 𝜎𝜖. Error

in attitude determination 𝑒𝑎𝑡𝑡 is also normally distributed with standard deviation

𝜎𝑎𝑡𝑡. For convenience, 𝑒𝑎𝑡𝑡 is assumed to be identical in the sensor frame azimuth and

elevation.

𝛼̃ = 𝛼 +𝑋1𝜎𝛼 +𝑋2𝜎𝑎𝑡𝑡

𝜖 = 𝜖+𝑋3𝜎𝜖 +𝑋4𝜎𝑎𝑡𝑡

(3.16)

Corrupted 𝜏 The error in TDOA measurement is generally influenced by

SV relative clock synchronization error 𝑒𝑡 and CAF measurement error 𝑒𝑑𝑡𝑜.

𝜏 = 𝜏 +𝑋1𝜎𝑑𝑡𝑜 +𝑋2𝜎𝑡 (3.17)
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Corrupted 𝜏̇ The error in FDOA measurement is influenced by the error in

relative frequency precision 𝑒𝑓 and CAF measurement error 𝑒𝑑𝑓𝑜.

˜̇𝜏 = 𝜏 +𝑋1
𝜎𝑑𝑓𝑜
𝑓𝑐

+𝑋2
𝜎𝑓
𝑓𝑐

(3.18)

Measurement CRLB As discussed in Sec. 2.3, 𝜎𝛼, 𝜎𝜖, 𝜎𝑑𝑡𝑜 and 𝜎𝑑𝑓𝑜 are

impacted by SNR, which is determined by several factors including slant range 𝜌𝑖𝑡.

Thus when comparing the measurement error for different pass geometries and alti-

tudes, the change in error due to slant range change must be incorporated. Therefore

in the sensitivity analysis (Chapter 4) the measurement CRLB from Sec. 2.3 was

used for 𝜎𝛼, 𝜎𝜖, 𝜎𝑑𝑡𝑜 and 𝜎𝑑𝑓𝑜, and additional measurement errors were simply added

to the CRLB when necessary.

Several parameters were needed to determine the CRLB for each AOA, TDOA, or

FDOA measurement, including SNR, signal bandwidth, number of collectd samples,

and integration time. It is assumed throughout that for each signal collect the SV

receiver has integration time 𝑇 of 1 ms and 10,000 samples 𝑁 are obtained. The

assumptions for Bandwidth, Transmit Power, Tx Antenna Gain, and Rx Antenna

Gain were chosen arbitrarily to yield reasonable CRLB values for the analysis.

Table 9. Link Budget Parameters and Assumptions

Parameter Value Unit

Slant Range Variable km

Frequency 1.315 GHz

Bandwidth 1 MHz

Transmit Power 65 W

Tx Antenna Gain 10 dBi

Free-Space Path Loss Variable dB

Other Losses -1 dB

Rx Antenna Gain 0 dBi

System Noise Temp 27.9 [64] dB-K
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For each of the 𝑀 measurements collected during a pass, the SNR 𝛾𝑖 at each SV

was calculated using Eq. 3.19 [64]. The assumptions made in the link budget are

described in Table 9.

𝛾𝑖 =
𝐶

𝑁
=
𝑃𝑡𝐺𝑡𝐺𝑟𝐿𝑎𝑡𝑚𝐿𝑓𝑠

𝑘𝑇𝑠𝐵𝑠

𝑖 = 1, 2, 3, 4 (3.19)

The azimuth and elevation CRLBs are obtained from Eqns. 2.3 and 2.4, arranged

in terms of the standard deviations 𝜎𝛼 and 𝜎𝜖. The SNR 𝛾1 and elevation angle 𝜖

change for each signal collect, while all other parameters in Eq. 3.20 are constant.

𝜎𝛼 =

√︃
𝛾−1
1 + 𝐴

𝛾1𝑁𝐴2(2𝜋𝑟/𝜆𝑟)2 sin
2(𝜖)

𝜎𝜖 =

√︃
𝛾−1
1 + 𝐴

𝛾1𝑁𝐴2(2𝜋𝑟/𝜆𝑟)2 cos2(𝜖)

(3.20)

The CRLB for 𝜎𝑑𝑡𝑜 and 𝜎𝑑𝑓𝑜 was assumed to be constant for all SVs for a given

measurement. So if there were 4 SVs in a cluster, there would be 3 TDOA measure-

ments, 𝜏21, 𝜏31, and 𝜏41, at any instant. Each of these measurements are assumed to

have the same effective SNR 𝛾𝑒𝑓𝑓 due to the close proximity of the SVs. Thus, 𝛾1 and

𝛾2, the SNRs at SVs 1 and 2, were used to obtain 𝛾𝑒𝑓𝑓 and the corresponding CRLB

for each measurement. (See Sec. 2.3).

The DTO and DFO CRLBs were described in Eqns. 2.12 and 2.13, respectively.

Note that for implementation 𝜎𝑑𝑓𝑜 is nondimensionalized by the carrier frequency 𝑓𝑐.

𝜎𝑑𝑡𝑜 =
0.55

𝐵𝑠

√︀
𝐵𝑛𝑇𝛾𝑒𝑓𝑓

𝜎𝑑𝑓𝑜 =
0.55

𝑓𝑐𝑇
√︀
𝐵𝑛𝑇𝛾𝑒𝑓𝑓

1

𝛾𝑒𝑓𝑓
≡ 1

2

[︂
1

𝛾1
+

1

𝛾2
+

1

𝛾1𝛾2

]︂ (3.21)
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3.5 Initial Transmitter Localization

3.5.1 Corrupt SV Position and Velocity

In reality each satellite does not exactly know its position and velocity, thus it was

assumed that its attitude determination and control system features a GPS receiver.

It is also assumed that the error distribution is equal in all 3 ECEF directions 𝑥, 𝑦,

and 𝑧. In reality, GPS navigation error will have some nonzero geometric dilution

of precision (GDOP), but an equal distribution was chosen to model the worst case

error and maintain simplicity.

In practice, relative position knowledge is more precise than absolute position

determination due to the advent of differential GPS. Therefore the absolute position

and velocity knowledge error (𝑒𝑝,𝑎𝑏𝑠, 𝑒𝑣,𝑎𝑏𝑠) is not modeled as independent, but rather

uniform across all SVs in the cluster. The absolute position and velocity error can be

thought of as the cluster position and velocity error.

s̃′𝑖 = s𝑖 +𝑋1

⎡⎢⎢⎢⎢⎣
𝜎𝑝,𝑎𝑏𝑠

𝜎𝑝,𝑎𝑏𝑠

𝜎𝑝,𝑎𝑏𝑠

⎤⎥⎥⎥⎥⎦ ˙̃s
′
𝑖 = ṡ𝑖 +𝑋1

⎡⎢⎢⎢⎢⎣
𝜎𝑣,𝑎𝑏𝑠

𝜎𝑣,𝑎𝑏𝑠

𝜎𝑣,𝑎𝑏𝑠

⎤⎥⎥⎥⎥⎦ 𝑖 = 1, 2, 3, 4 (3.22)

Relative knowledge errors (𝑒𝑝,𝑟𝑒𝑙, 𝑒𝑣,𝑟𝑒𝑙) are then added to SVs 2, 3, and 4 inde-

pendently.

s̃𝑖 = s̃′𝑖 +𝑋𝑖

⎡⎢⎢⎢⎢⎣
𝜎𝑝,𝑟𝑒𝑙

𝜎𝑝,𝑟𝑒𝑙

𝜎𝑝,𝑟𝑒𝑙

⎤⎥⎥⎥⎥⎦ 𝑖 = 2, 3, 4

˙̃s𝑗 = ˙̃s
′
𝑗 +𝑋𝑗

⎡⎢⎢⎢⎢⎣
𝜎𝑣,𝑟𝑒𝑙

𝜎𝑣,𝑟𝑒𝑙

𝜎𝑣,𝑟𝑒𝑙

⎤⎥⎥⎥⎥⎦ 𝑗 = 2, 3, 4

(3.23)
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Notice the standard deviations of relative knowledge error is constant across the SVs

but the errors are independent, since each 𝑋𝑖 is a new realization of the random

variable.

3.5.2 ITL Methods

Each ITL method takes 𝑀 sets of measurements and obtains 𝑀 ITL solutions

(with exception of AOA, which obtains 1 ITL solution). See App. A for in depth

implementation of each ITL method: AOA, TDOA3, TDOA4, TFDOA2, TFDOA3.

Recall TFDOA4 is the same algorithm as TFDOA3, the only difference is the number

of SVs.

m̃𝐿𝑀×1 → û𝑀×3 (3.24)

In the sensitivity analysis (Chapter 4), the ITL solutions are used to evaluate algo-

rithm accuracy. However, additional methods like maximum likelihood estimation,

estimate fusion, and application of digital elevation models will be used to evaluate

realistic system level performance (Chapter 5).

3.6 Maximum Likelihood Estimation

Once an ITL solution û𝐼𝑇𝐿 has been obtained, the Gauss-Newton algorithm can be

executed to determine the maximum likelihood estimate û𝑀𝐿𝐸. Recall the iterative

solution for û𝑀𝐿𝐸 from Sec. 2.5.3.

û𝑘+1 = û𝑘 + (J𝑇Q−1
𝑚 J)−1J𝑇Q−1

𝑚 [m̃−m(û𝑘)]

||û𝑘+1 − û𝑘|| ≤ 𝑡𝑜𝑙

(3.25)

The parameters on the right side of Eq. 3.25 must be determined to execute the

algorithm. The initial guess û0 is the average of all the ITL solutions for that pass
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(û𝑀×3) which were obtained in Sec. 3.5.2. Q𝑚 is 𝐿𝑀 × 𝐿𝑀 , where 𝐿 is the number

of measurement parameters per collect. For AOA, 𝐿 = 2, for 4-ball TDOA, 𝐿 = 3.

Q𝑚 = diag[𝜎2
𝛼1
, 𝜎2

𝜖1
, ..., 𝜎2

𝛼𝑀
, 𝜎2

𝜖𝑀
] (𝐴𝑂𝐴)

= diag[𝜎2
𝜏211

, 𝜎2
𝜏311

, ..., 𝜎2
𝜏21𝑀

, 𝜎2
𝜏31𝑀

] (𝑇𝐷𝑂𝐴3)

= diag[𝜎2
𝜏211

, 𝜎2
𝜏̇211

, ..., 𝜎2
𝜏21𝑀

, 𝜎2
𝜏̇21𝑀

] (𝑇𝐹𝐷𝑂𝐴2)

(3.26)

The Jacobian matrix J is 𝐿𝑀 × 3 and represents the change in measurements with

respect to change in transmitter location. J for the TFDOA2 case will be expressed

here, J for other techniques (AOA, TDOA3, TDOA4, TFDOA2, TFDOA4) can be

inferred.

J =
𝜕m

𝜕u
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜏211
𝜕𝑢𝑥

𝜕𝜏211
𝜕𝑢𝑦

𝜕𝜏211
𝜕𝑢𝑧

𝜕𝜏̇211
𝜕𝑢𝑥

𝜕𝜏̇211
𝜕𝑢𝑦

𝜕𝜏̇211
𝜕𝑢𝑧

...
...

...

𝜕𝜏21𝑀
𝜕𝑢𝑥

𝜕𝜏21𝑀
𝜕𝑢𝑦

𝜕𝜏21𝑀
𝜕𝑢𝑧

𝜕𝜏̇21𝑀
𝜕𝑢𝑥

𝜕𝜏̇21𝑀
𝜕𝑢𝑦

𝜕𝜏̇21𝑀
𝜕𝑢𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.27)

The expected and corrupted measurements m(û𝑘) and m̃ are each 𝐿𝑀 × 1 and

were defined in Eqns. 2.16 and 2.17, but are rewritten for the TFDOA2 case as an

example in Eq. 3.28. m(û𝑘) contains the expected true measurements given the

current transmitter location estimate.

m(u) = [𝜏211 , 𝜏211 , ..., 𝜏21𝑀 , 𝜏21𝑀 ]𝑇

m̃ = [𝜏211 , ˜̇𝜏211 , ..., 𝜏21𝑀 , ˜̇𝜏21𝑀 ]𝑇
(3.28)

If the estimate converges to within 𝑡𝑜𝑙 = 0.1 m the method is complete. Estimates

which diverge are discarded and the original guess û0 is defined as û𝑀𝐿𝐸.
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3.7 Application of DEM

The method for refining the estimate û using a digital elevation model is similar

to the one Schmidt [8] used. As discussed in Sec. 2.6, the DEM utilized for the

grid search was USGS 3-arcsecond SRTM data [62]. This DEM will be referred to as

DTED1 for convenience. The method of downloading this data is explained in App.

B. The process for applying DTED1 to obtain a better estimate for u is as follows:

1. Seed. Use the MLE estimate û𝑀𝐿𝐸 as the seed, or initial guess, for the following

grid search. First convert the seed û𝑀𝐿𝐸 from ECEF coordinates to latitude,

longitude, and elevation using the MATLAB function ecef2lla.

2. Grid Size. The 95% confidence ellipsoid semi-major axis (SMA) length (Sec.

3.8) is used to determine the grid width 𝑤𝑔. This method avoids the computa-

tional inefficiency of importing unnecessary grid points. A rough approximation

of 110 km ≈ 1∘ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 is used to convert the SMA length into degrees. The

grid limits are then defined using the seed.

𝐿𝐴𝑇𝐿𝐼𝑀 = [𝑙𝑎𝑡𝑢̂ − 0.5ℎ𝑔, 𝑙𝑎𝑡𝑢̂ + 0.5ℎ𝑔]

𝐿𝑂𝑁𝐿𝐼𝑀 = [𝑙𝑜𝑛𝑢̂ − 0.5𝑤𝑔, 𝑙𝑜𝑛𝑢̂ + 0.5𝑤𝑔]

ℎ𝑔 = 𝑤𝑔 = 𝑆𝑀𝐴(km)

(︂
1∘

110 km

)︂ (3.29)

If 𝑤𝑔 is too large then the grid desired might require multiple DTED1 1∘ × 1∘

files. It is assumed that if 𝑤𝑔 is too large (> 100 km uncertainty) then a DTED1

grid search won’t greatly improve the estimate. Though rare, if 𝑤𝑔 is too small

then not enough DTED1 posts will be imported. Thus lower and upper bounds

are set for 𝑤𝑔 for this research.

0.5 km

(︂
1∘

110 km

)︂
< 𝑤𝑔 < 0.5∘ (3.30)
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3. Import DTED1. Once the grid limits are defined, DTED1 can be imported

using the MATLAB dted function. App. B explains how DTED data can

be downloaded in advance. MATLAB’s dted allows sampling factor 𝑠𝑓 to be

chosen. MATLAB extracts every 𝑠𝑓
𝑡ℎ point from the DTED1 grid. For a large

grid 𝑠𝑓 = 1 can be computationally inefficient. Thus, a constant number of grid

cells is chosen, then 𝑠𝑓 is calculated based on the grid size 𝑤𝑔.

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 20

𝐷𝑇𝐸𝐷1 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1200 𝑐𝑒𝑙𝑙𝑠/𝑑𝑒𝑔

𝐷𝑇𝐸𝐷1 𝑐𝑒𝑙𝑙𝑠 = 𝑤𝑔(𝐷𝑇𝐸𝐷1 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑠𝑓 ≈ 𝐷𝑇𝐸𝐷1 𝑐𝑒𝑙𝑙𝑠

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠

(3.31)

The data returned is a square matrix containing elevations (in meters) refer-

enced to the Earth Gravitational Model (EGM 96). Each elevation value is the

orthometric height 𝐻 (Fig. 12).

4. Get WGS84 Ellipsoid Height ℎ. The next step is to define the newfound

elevation data with respect to the WGS84 ellipsoid using Eq. 3.32. Recall Fig.

12 from Sec. 2.6.

ℎ = 𝐻 +𝑁 (3.32)

The Geoid heights 𝑁 for the grid defined in Eq. 3.29 are obtained via the

MATLAB function egm96geoid. Since the Geoid has poorer resolution than

DTED1, ltln2val is used to perform bicubic interpolation to obtain the correct

𝑁 for each DTED1 post 𝐻.

5. LLA to ECEF. Convert the geodetic coordinates of each post (latitude, lon-
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gitude, WGS84 height) into ECEF coordinates using lla2ecef.

(𝜑, 𝜆, ℎ) → (𝑥, 𝑦, 𝑧) (3.33)

6. Choose Best Post. The maximum likelihood principle is applied to choose

the DTED1 post closest to u. The correct post is the one that minimizes the

original measurement errors. Recall Eq. 2.20 and rearrange in terms of the

posts p.

û𝑝 = arg min
p

{︀
[m̃−m(p)]𝑇W[m̃−m(p)]

}︀
(3.34)

The right side of Eq. 3.34 is the figure of merit (FOM) 𝜓𝑖. 𝜓𝑖 is explicitly calcu-

lated for each post. This method of obtaining an FOM is more computationally

burdensome than the FOMs Schmidt [8] utilized, however it has higher fidelity

and is uniform for each of the algorithm types (AOA, TDOA, T/FDOA). 𝜓𝑖

only differs by the type of measurement inputs m.

𝜓𝑖 = [m̃−m(p𝑖)]
𝑇W[m̃−m(p𝑖)] 𝑖 = 1, 2, ..., 𝑃 (3.35)

In Eq. 3.35 m̃ is 𝐿𝑀 × 1 set of measurements for the pass, m(p𝑖) is the

set of expected measurements were the true transmitter located at p𝑖, and W

weighting matrix, defined as Q−1
𝑚 (See Eq. 3.26). The optimal p𝑖 is the one

that corresponds to the minimum 𝜓𝑖.

û𝑑𝑡𝑒𝑑 = arg min
p

{𝜓} (3.36)

7. Iterate. If the chosen post û𝑝 lies on the outside of the grid, it is possible that

the optimal solution may be off the grid. Therefore it is necessary to redefine

the grid with û𝑝 as the seed, and return to step 2.
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Figure 26. DTED1 grid search for post that minimizes FOM 𝜓

Figure 27. Example of DEM iterative grid search when chosen post is near grid bound-
ary ( [8])
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The final geolocation solution obtained by the DTED1 grid search lies on a DTED1

elevation post, so there is additional uncertainty since the true transmitter location

was defined with the DTED2 data (Sec. 3.2.1). This uncertainty caused by difference

in resolution between DTED1 and DTED2 as shown in Fig. 28. The effect of this

Truth Surface 

(DTED2 Interpolated)

DTED2 

Post 
~30 m

DTED1 

Post 

= True Tx

= Tx estimate (uDTED1)

~90 m

Figure 28. Geolocation error due to resolution of DTED1

uncertainty is negligible for this research because for the geolocation error due to

system errors is much larger than the resolution discrepancy of the DEMs.

3.8 Measures of Performance

This section contains the quantitative measures used in Chapters 4 and 5 to

evaluate performance. Overall, four MOPs were used to assess geolocation accuracy:

range root mean square error, average miss distance, average ellipsoid volume, and

average semi-major axis length.
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Table 10. Measures of Performance

MOP Symbol Unit

Range RMSE RMSE m

Average Miss Distance AMD m

Average Ellipsoid Semi-Major Axis Length 𝑆𝑀𝐴 m

Average Ellipsoid Volume 𝑉 m3

Geolocation Error The absolute error of the transmitter location estimate

û is

eû = û− u =

⎡⎢⎢⎢⎢⎣
𝑒𝑥

𝑒𝑦

𝑒𝑧

⎤⎥⎥⎥⎥⎦ (3.37)

The covariance matrix is defined as

Cû = 𝐸[(û− u)(û− u)𝑇 ] (3.38)

The absolute range error for a single estimate û is shown in Eq. 3.39.

𝑒𝜌 =
√︀

(û− u)𝑇 (û− u) =
√︁
e𝑇ûeû (3.39)

ECEF to ENU Transformation The absolute error and covariance matrix

are expressed in ECEF coordinates. To graphically depict the estimate û and its

covariance matrix C in East-North-Up (ENU) coordinates, it is necessary to use the

transformation matrix R𝑒𝑛𝑢
𝑒𝑐𝑒𝑓 . 𝜆 and 𝜑 are the longitude and latitude of the reference
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point. In Chapter 5 the reference point is the true transmitter location u.

û𝑒𝑛𝑢 = Rû𝑒𝑐𝑒𝑓

û𝑒𝑛𝑢 = RC𝑒𝑐𝑒𝑓R
𝑇

R = R𝑒𝑛𝑢
𝑒𝑐𝑒𝑓 ≡

⎡⎢⎢⎢⎢⎣
− sin𝜆 cos𝜆 0

− cos𝜆 sin𝜑 − sin𝜆 sin𝜑 cos𝜑

cos𝜆 cos𝜑 sin𝜆 cos𝜑 sin𝜑

⎤⎥⎥⎥⎥⎦
(3.40)

Ellipsoid Semi-Major Axis Length The square root of the eigenvalues of

C represent the 3 ellipsoid axis lengths. The semi-major axis (SMA) is the maximum

of the 3 semi-axis lengths. The SMA of the 95% confidence ellipsoid is obtained by

multiplying the scale factor 𝜒 times the square root of the eigenvalue.

𝑆𝑀𝐴95% = 𝜒
√︀
𝜆𝑚𝑎𝑥

𝜒2 = 7.815

(3.41)

Ellipsoid Volume Each of the semi-axis lengths (𝑎, 𝑏, and 𝑐) of the 95%

confidence ellipsoid is defined as 2.8
√
𝜆𝑖. The 95% confidence ellipsoid volume is:

𝑉95% =
4

3
𝜋𝑎𝑏𝑐 (3.42)

It is valuable to maintain both the ellipsoid volume and SMA because a confidence

ellipsoid with small volume could be misleading if it has very large SMA.

3.8.1 Monte Carlo Simulation

The geolocation simulation includes Gaussian random variables used to model

system errors. A Monte Carlo Simulation (MCS) is useful when the probability

of a random variable cannot be determined analytically or numerically [65]. An
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MCS involves executing 𝑁 trials of a test and obtaining the expected value of the

outcomes [65]. Depending on the test, hundreds or thousands (or more) trials could

be needed for the statistics to converge. For the tests in this research involving

random noise, 𝑁 trials were run and the 4 MOPs below were determined. These

MOP definitions were also utilized in Guo [3] and Schmidt [8], among others.

1. Range Root Mean Square Error (RMSE)

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

(û− u)𝑇 (û− u) (3.43)

2. Average miss distance (AMD)

𝐴𝑀𝐷 =
1

𝑁

𝑁∑︁
𝑛=1

√︀
(û− u)𝑇 (û− u) (3.44)

3. Average Ellipsoid SMA

𝑆𝑀𝐴95% =
1

𝑁

𝑁∑︁
𝑛=1

𝑆𝑀𝐴95%𝑛 (3.45)

4. Average Ellipsoid Volume

𝑉 95% =
1

𝑁

𝑁∑︁
𝑛=1

𝑉95%𝑛 (3.46)

Due to limited time and the computational efficiency of the algorithms used in

this research, enough trials were executed to observe general trends in the data, but

in some test cases more trials would be needed to have statistical convergence
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3.9 Summary

This chapter described the methods used to simulate a geolocation scenario and

obtain an estimate for an RF transmitter’s location using initial transmitter localiza-

tion (ITL) techniques, maximum likelihood estimation, fusion, and digital elevation

models. The next chapter contains the results and analysis pertaining to the sensi-

tivity of ITL accuracy to system errors and variation in SV orbit geometry. Chapter

5 demonstrates how geolocation accuracy is significantly improved when the methods

discussed in Chapter 3 are combined.
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4. Sensitivity Analysis

4.1 Overview

This chapter contains analysis of the sensitivity of the initial transmitter localiza-

tion (ITL) accuracy to system errors and SV orbit geometry.

Trade Space The sensitivity of ITL accuracy to 11 different parameters was

analyzed. These parameters and their trade spaces are seen in Table 11. Notice there

are some parameters related to System Performance (See Table 17) not included,

namely attitude knowledge error and time/frequency synchronization errors, due to

their redundancy. For example, in the simulation, attitude knowledge error is simply

added to AOA measurement error (Sec. 3.4.2), so doing an additional trade on

attitude knowledge impact on ITL accuracy would be redundant with a trade on

AOA measurement error.

Methods Several assumptions were made in this sensitivity analysis to iso-

late the variable of interest’s effect on geolocation accuracy.

∙ Isotropic Transmitter. The transmitter utilized in this sensitivity analysis

has an isotropic beam pattern. The transmitter beam pattern and SV ground

tracks for each pass type are seen in Fig. 15. A signal collect was simulated

approximately every 12 seconds.

∙ Transmitter Altitude. The true transmitter altitude is assumed to be known.

Therefore no iteration is required to obtain the transmitter altitude 𝑟𝑒, and

altitude errors can be factored out of the resultant ITL error.

∙ Baseline. Fig. 46 from the baseline analysis was used to determine a viable

baseline distance to use for all sensitivity analyses. It was determined that error
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Table 11. Sensitivity Analysis Trade Space

Parameter Trade Space Remarks

SV Altitude [350, 1000] km Lower bound: Δ𝑉 required, Upper
bound: Van Allen belt

Pass Geometry 1-5 1 = Pass directly overhead, 5 = Pass
near horizon (Fig. 15)

Baseline 1-30 km Defined by separation distance from
chief (in-track or cross-track)

# Signal Collects [2, 20] At least 2 collects needed for AOA so-
lution (2 LOBs)

SV Navigation Errors

Absolute Position [0, 50] m Assuming on-board GPS receiver

Absolute Velocity [0, 1] m/s Assuming on-board GPS receiver

Relative Position [0, 5] m Assuming Differential GPS

Relative Velocity [0, 0.5] m/s Assuming Differential GPS

Measurement Errors

Az and El [0, 0.5] deg Error in Az and El angle measure-
ments, due to hardware and MUSIC al-
gorithm error

Differential Time
Offset (DTO)

[0, 150] ns Time difference measurement error,
due to hardware and Complex Ambi-
guity Function (CAF) accuracy

Differential Freq.
Offset (DFO)

[0, 150] Hz Frequency difference measurement er-
ror, due to hardware and CAF accu-
racy

due to short baseline did not decrease much beyond 15 km. The relative SV

geometry for this scenario is seen in Fig. 17. Also Tx 1 (Table 6) was chosen

because for the relative SV geometry was most constant compared to the mock

transmitters at other latitudes.

∙ Number of Collects. For all of the analyses (except ITL sensitivity to num-

ber of signal collects and pass geometry) the minimum number of signal collects

to obtain an ITL solution was utilized. That way the number of collects was

removed as an independent variable. For the Pass Geometry analysis, the num-
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ber of collects varied with pass type (Fig. 15). For the “number of collects”

analysis, 𝑀 was the independent variable.

∙ System Errors. For the Altitude, Pass Geometry, Baseline, and Number of

Collects analyses, all system errors were assumed to be zero except that the

measurement error was set to equal the MUSIC or CAF CRLB (Eqs. 2.3,

2.4, 2.12, 2.13). There is variation of slant range inherent with altitude and

collection geometry changes, so measurement error based off of the CRLB is

used to include slant range effects on measurements. However, for the other

analyses all system errors were set to zero except for the variable being traded.

For each test case, system parameters were defined, then the initial transmitter

localization (ITL) solution was calculated for 𝑁 Monte Carlo trials. In the cases

where solutions could not be found due to high system errors or solutions not within

line of sight of the SVs, solutions were discarded. Then the ITL root mean square

error (RMSE) was determined using Eq. 3.43. All of the results in this sensitivity

analysis contain accuracy in terms of ITL RMSE (km).

4.1.1 Initial Noise-Free Test

Before the ITL accuracy in the present of system errors was analyzed, it was

necessary to obtain a baseline by observing the ITL method accuracy and computation

time without the presence of measurement and SV location errors. For a single pass

of𝑀 measurements, the time to compute𝑀 ITL solutions and the RMSE of those𝑀

ITL solutions was determined. The exception is that the AOA algorithm produces 1

ITL solution for 𝑀 measurements. For this test, it was assumed the true transmitter

altitude was known and root disambiguation errors were ignored. The computation

times were normalized by the fastest time, which was the AOA processing time 𝑡𝑎𝑜𝑎.

Results are shown in Table 12. Note that TFDOA3 and TFDOA4 are really the same
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method, and their inaccuracy is caused due to the tolerance of the Newton method

search, which was set to 1 m for this test. The AOA algorithm was the fastest and

Table 12. ITL Method Accuracy and Computation Time in Noise-Free Case

ITL Method # of SVs ITL RMSE (m)
Normalized

Comp. Time

AOA 1 5.35e-9 1.00

TDOA3 3 5.71e-6 7.50

TDOA4 4 1.15e-4 5.99

TFDOA2 2 3.66e-6 10.47

TFDOA3 3 1.59 15.87

TFDOA4 4 2.20 14.65

Note: Tx 3, Pass 3, M = 30, times normalized by 𝑡𝑎𝑜𝑎

most accurate, because the algorithm requires only trigonometry and a single LS

intersection. The other algorithms require solving polynomial equations for the root

𝜌1. Furthermore, TFDOA3 involves Newton iteration, which adds additional time.

Recall that TFDOA3 and TFDOA4 are the same algorithm, the only difference is

number of SVs. Computation time for TFDOA3 can be decreased by decreasing the

Newton method tolerance, although some accuracy will be forfeited.

4.2 ITL Sensitivity to Altitude

It is important to point out that in this analysis the signal collects were simulated

to occur directly above the transmitter, so that the SV ground track was co-located

with the transmitter (Fig. 29). Therefore as the altitude was increased, only slant

range from the transmitter to the SVs was increased. If the SVs were not directly

overhead, a change in altitude would be accompanied with change in elevation angle

of the SVs w.r.t. the transmitter.
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𝜖𝑠𝑣 = 90∘

Figure 29. Method of increasing SV altitude for sensitivity analysis (Not to scale)

4.2.1 AOA Sensitivity to Altitude

To begin, the effect of altitude on single-SV AOA accuracy was studied. All

system errors were assumed to be zero except the AOA measurement error, 𝜎𝛼 and

𝜎𝜖. The CRLB from Eq. 2.3 and Eq. 2.4 was used to model 𝜎𝛼 and 𝜎𝜖 at each

altitude. The altitude certainly has an impact on the best measurement accuracy

achievable since 𝜎𝛼 and 𝜎𝜖 depend on SNR 𝛾. Modeling angle measurement error

as constant for all altitudes would yield overly optimistic results at higher altitudes.

The results in Fig. 30 show that as altitude increases AOA geolocation accuracy

decreases. The fundamental independent variable is slant range. Slant range impacts

1) the angle measurement error due reduced signal strength caused by free-space loss

and 2) the effect small measurement noise has on the ITL algorithm solution. Fig.

31 shows how the signal measurement error (AOA), modeled as the CRLB, increases

as altitude, or slant range in this case, increases. Secondly, of slant range has an

impact on AOA error due to the basic geometry of the AOA algorithm. As shown

in Fig. 32, increase in slant range 𝜌1 for constant angle error causes greater estimate

uncertainty. The uncertainty of the line of bearing (LOB) end points generated from

AOA measurements will be greater as the slant range increases, for a constant angle
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Figure 30. AOA algorithm sensitivity to SV altitude (Tx 1, Pass 1, 1 collect, 2000
trials, 𝜎𝛼 = 𝜎𝜖 = 𝐶𝑅𝐿𝐵)
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Figure 31. MUSIC (𝜎𝛼, 𝜎𝜖) CRLB at different altitudes (See Eqs. 2.3 and 2.4)
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Figure 32. Constant AOA error leads to large estimate uncertainty in presence of large
slant range, due to geometry

error.

4.2.2 TDOA Sensitivity to Altitude

It is observed in Figs. 33 and 34 that for both the TDOA3 and TDOA4 algorithms,

accuracy decreases with increase in altitude. This effect is attributed to the increase

in slant range, which affects the measurement error 𝜎𝜏 and the TDOA algorithm

equation. As seen in Fig. 35, 𝜎𝜏 increases due to decrease in SNR 𝛾 caused by free-

space loss (See Eq. 2.12). The effect of increased slant range on the TDOA algorithm

is seen in the general TDOA Eq. A.18 found in App. A.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = s𝑇𝑖 s𝑖 − s𝑇1 s1 − 2(s𝑖 − s1)
𝑇u (4.1)

The TDOA corrupted by measurement error 𝜏𝑖1 causes 𝑟𝑖1 in Eq. 4.1 to become

corrupted (𝑟𝑖1), due to Eq. 2.5. So as the slant range 𝜌1 increases, the second term

in Eq. 4.1 becomes larger, thereby magnifying the effect measurement noise has on
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Figure 33. TDOA3 algorithm sensitivity to SV altitude (Tx 1, Pass 1, 1 collect, 2000
trials, 𝜎𝜏 = 𝐶𝑅𝐿𝐵)
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Figure 34. TDOA4 algorithm sensitivity to SV altitude (Tx 1, Pass 1, 1 collect, 2000
trials, 𝜎𝜏 = 𝐶𝑅𝐿𝐵)
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Figure 35. Complex Ambiguity Function (CAF) differential time offset CRLB 𝜎𝜏 at
different altitudes (See (2.12))

the TDOA equation. When there are any corrupt terms in the equation, the left side

is not equal to the right side. This discrepancy will be referred to in this section as

the equation defect.

4.2.3 T/FDOA Sensitivity to Altitude

Similar to AOA and TDOA, for the T/FDOA methods geolocation error increases

as SV altitude increases, as shown in Figs. 36 and 37. The slant range impacts the

DTO and DFO measurement errors (𝜎𝜏 and 𝜎𝑓 ), because of the lower SNR caused

by free-space loss. The effect of SNR on measurement error is seen in Eqs. 2.12

and 2.13, and the impact of altitude, or more specifically slant range, on the CAF

CRLB is shown in Fig. 38. Slant range 𝜌1 also impacts the TDOA and T/FDOA

equation defect. The effect of 𝜌1 on the general TDOA equation was discussed in

Sec. 4.2.2. The T/FDOA general equation is rewritten in Eq. 4.2 with the corrupt

range and range rate difference measurements 𝑟𝑖1 and ˜̇𝑟𝑖1. The range rate difference

measurements ˜̇𝑟𝑖1 are corrupted by erroneous FDOA measurement errors ˜̇𝜏𝑖1 according
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Figure 36. TFDOA2 algorithm sensitivity to SV altitude (Tx 1, Pass 1, 1 collect, 2000
trials, 𝜎𝜏 = 𝐶𝑅𝐿𝐵, 𝜎𝜏̇ = 𝐶𝑅𝐿𝐵)
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Figure 37. T/FDOA algorithm sensitivity to SV altitude (Tx 1, Pass 1, 1 collect, 2000
trials, 𝜎𝜏 = 𝐶𝑅𝐿𝐵, 𝜎𝜏̇ = 𝐶𝑅𝐿𝐵)
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Figure 38. Complex Ambiguity Function (CAF) differential frequency offset CRLB 𝜎𝑓
at different altitudes (See (2.12))

to Eq. 2.6.

2𝑟𝑖1 ˜̇𝑟𝑖1 + 2𝑟𝑖1𝜌̇1 + 2˜̇𝑟𝑖1𝜌1 − 2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑖 = 2, 3, ..., 𝑆 (4.2)

It is seen from an (4.2) that an increase in 𝜌1 causes the third term in Eq. 4.2 to

be magnified. Thus for two different cases where the noise in ˜̇𝑟𝑖1 is constant, the one

with larger 𝜌1 will have greater T/FDOA equation defect.

It can be observed from Figs. 36 and 37 that for the same measurement errors

𝜎𝜏 and 𝜎𝑓 , as the number of SVs increases, the ITL accuracy improves. This is to

be expected, since as the number of SVs increase, the number of measurements per

collect increases. Note that the TFDOA3 and TFDOA4 were executed with the same

algorithm, T/FDOA for 𝑆 ≥ 3 [23]. Therefore it is expected that their sensitivity to

altitude have similar trends.
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4.2.4 Altitude Sensitivity Summary

Another result evident in Fig. 34 is that compared with TDOA3 Fig. 33 the same

measurement error yields much larger error in the TDOA4 algorithm. This effect is

discussed in subsequent analyses.

In general, as the altitude of any SV or constellation increases, the geolocation

accuracy will decrease. This statement is true for all of the methods considered when

only the altitude changes. Essentially, change in altitude corresponds with change in

slant range, which impacts both the signal measurement error and the ITL algorithm

equation defect in the noisy case.

It is important to note that for a single pass, depending on the collection geometry,

an increase in altitude could entail an increase in slant range and elevation angle of

the SVs w.r.t. the transmitter. A graphic of this is seen in Fig. 39. In this

SV

Tx

Increasing 

altitude𝜖𝑠𝑣

Figure 39. Effect of increasing SV altitude on slant range and elevation of SVs w.r.t.
transmitter for non-overhead passes (Not to scale)

case, the slant range is not the only independent variable, and the ITL algorithm

error could display a different trend than discussed in this section. For example, if

elevation angle of the SVs also increased, AOA and TDOA3 error could decrease.
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Guo [3] demonstrated how TDOA3 error was smaller when the Tx was close to the

sub-satellite point. However, the orbit designer is not taking into account a single

pass, but all the different pass geometries over a mission lifetime, and for that scope,

increased altitude generally yields increased geolocation error.

4.3 ITL Sensitivity to Pass Geometry

The 5 different pass types defined in Fig. 15 represent 5 possible signal collection

geometries. For an isotropic transmitter, a SV passing overhead will have more op-

portunities to collect the signal of interest. Furthermore, during the course of a single

pass, both the slant range and the elevation angle of the SVs w.r.t. the transmitter

are changing. So there are several independent variables involved in a change in pass

type. It is also important to note that for the case of an unknown transmitter, the

pass type cannot be controlled by the designer. The purpose of this analysis is to

investigate the general behavior ITL algorithms for different pass types.

4.3.1 AOA Sensitivity to Pass Geometry

The AOA algorithm sensitivity to the 5 different pass types is seen in Fig. 40.

It is evident from Fig. 40 that the geolocation error is less for overhead passes than

for passes close to the horizon. Recall that for this analysis it was assumed that

the SV receiver had an isotropic beam pattern, so the receiver gain was equal in all

directions. Therefore, signal collects near the horizon had a lower SNR than collects

close to overhead, due to longer slant range. However, many payload antennas have

omni-directional or directional beam patterns, which could have higher gain for lower

elevation angles. The trend seen in Fig. 40 is only applicable for systems where angle

measurement error is decreased at the horizon due to slant range and/or elevation.

The increase in ITL error from Passes 1-5 is caused by several factors. Firstly,

85



1 2 3 4 5

Pass Type

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IT
L

 R
a

n
g

e
 R

M
S

E
 (

k
m

)

Figure 40. AOA algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝛼 = 𝜎𝜖 =
𝐶𝑅𝐿𝐵)

as the pass number increases, the average elevation angle of arrival decreases, since

the passes become closer to the horizon. It can be seen in Eq. 2.4 how the MUSIC

CRLB increases as elevation of arrival decreases. Secondly, as pass number increases,

the average slant range for the entire pass increases. It was discussed in Sec. 4.2 how

slant range impacts the both the angle measurement error and the uncertainty of the

LOBs in the noise case. Lastly, as the pass number increases, the number of collects

decreases for this isotropic transmitter case. It will be investigated in Sec. 4.5 how

more signal collects can lead to a more accurate geolocation estimate.

4.3.2 TDOA Sensitivity to Pass Geometry

The TDOA3 and TDOA4 algorithm sensitivity to the pass type is shown in Figs.

41 and 42, respectively. For this analysis it was assumed that the 15 km baseline

distance between the satellites remained relatively constant during the entire pass. It

is left for future work to explore how a more geometrically diverse satellite formation
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influences the algorithm accuracy for different pass types. In addition, it was assumed

that the SV receiver gain was equal in all directions, so the change in SNR was solely

influenced by free-space loss. As a result, the CAF CRLB increased with slant range.

For TDOA3 passes close to overhead were more accurate than passes close to the
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Figure 41. TDOA3 algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝜏 =
𝐶𝑅𝐿𝐵)

horizon. For the other transmitter locations tested (Table 6) this general trend was

also true. This trend is consistent with Guo’s [3] findings that the TDOA3 solutions

are most accurate when the transmitter is near the sub-satellite point. Furthermore,

Pass 1 contains several signal collects overhead the transmitter, so it is expected that

it is generally more accurate.

It is evident from Fig. 42 that for TDOA4, “middle” passes are the most accurate

for this scenario. The extent to which middle passes are “better” for this partic-

ular TDOA4 algorithm is dependent on the SV formation geometry and the DTO

measurement error.

There are several factors which influence the TDOA algorithm error. The impact
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Figure 42. TDOA4 algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝜏 =
𝐶𝑅𝐿𝐵)

of slant range 𝜌𝑖 on DTO measurement error 𝜎𝜏 and the TDOA equation defect was

discussed in Sec. 4.2. The impact of the number of collects on TDOA3 and TDOA4

accuracy is investigated in Sec. 4.5. An additional factor that influences TDOA and

T/FDOA geolocation is the observation geometry of the SVs during a signal collect.

Observability in geolocation describes how well a unique solution for the trans-

mitter can be determined based on observations [3]. Poor observability leads to a

near-singular matrix in the TDOA and T/FDOA algorithms, which causes inaccu-

rate matrix inversion. Also note that observability is not affected by measurement

noise, but by collection geometry. More diverse SV relative geometries at the time of

signal collection yield good observability. The GDOP due to collection geometry can

be found in [3] and [23].

The observability error has a much greater influence on TDOA4 error (Fig. 42)

than TDOA3 error for this case. The TDOA4 error has a similar trend to TDOA3

but the total TDOA4 error is more than 10 times the magnitude of TDOA3. TDOA4
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is much more sensitive to poor observation geometry and increase in slant range.

4.3.3 TFDOA2 Sensitivity to Pass Geometry

The T/FDOA algorithms exhibit slightly different behavior than AOA and TDOA

(Figs. 43, 44, 45). Firstly, observability has a more visible effect in the ITL error

trend seen in Figs. 41 and 42. Guo [3] showed that the T/FDOA error is greater in

the direction of SV velocity, because G1 found in Eq. A.50 is not invertible. This

effect is seen in Figs. 43, 44, and 45. A “dip” is seen in each of the T/FDOA plots,

showing that the middle pass is where neither poor observability error nor large slant

range error dominate. Thus in the case where the TDOA and FDOA measurement

error is close to the CAF CRLB, “middle” passes are best for geolocation accuracy.
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Figure 43. TFDOA2 algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝜏 =
𝐶𝑅𝐿𝐵, 𝜎𝜏̇ = 𝐶𝑅𝐿𝐵)
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Figure 44. TFDOA3 algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝜏 =
𝐶𝑅𝐿𝐵, 𝜎𝜏̇ = 𝐶𝑅𝐿𝐵)
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Figure 45. TFDOA4 algorithm sensitivity to pass geometry (Tx 1, 2000 trials, 𝜎𝜏 =
𝐶𝑅𝐿𝐵, 𝜎𝜏̇ = 𝐶𝑅𝐿𝐵)
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4.3.4 Pass Geometry Sensitivity Summary

In general, passes at the horizon yield more inaccurate ITL solutions than overhead

passes. There are three effects seen: 1) observation error, 2) slant range, and 3)

measurement error. For TDOA and T/FDOA algorithms, passes overhead incur

errors due to poor observation geometry. All algorithms are inaccurate due to large

slant range when passes are at the horizon. And thirdly, the elevation and slant range

influence measurement error for each of the algorithms. In the results discussed in

this section the measurement error is modeled as the MUSIC and CAF CRLB, so

increase in elevation and slant range increases error in all cases.

For AOA, TDOA3, and TDOA4, the ITL error increases as passes become closer

to the horizon. The exception is that TDOA3 and TDOA4 experience observation

error in overhead passes, and TDOA4 has a very large observation error. For each of

the T/FDOA algorithms, middle passes, i.e. passes neither at the horizon nor over-

head, yield the highest ITL accuracy. Looking at all algorithms combined, middle

passes generate the most consistent ITL accuracy, as they strike a balance between

observation error and measurement error due to slant range. Furthermore, horizon

passes tend to generate more ITL error. These trends are valid for SVs whose mea-

surement error increases similarly to the MUSIC and CAF CRLB, i.e. increases with

slant range.

4.4 ITL Sensitivity to Baseline Distance

The baseline distance Δ𝑏 is the approximate relative distance between the SVs

for the duration of a pass (See Fig. 17). As previously mentioned, the effects of

cluster geometry on ITL accuracy were not examined in this research, however this

analysis details how changing baseline distance in general effects geolocation accuracy.

It can be seen in Fig. 46 that for each of the multi-SV algorithms greater baseline

91



distance directly correlates to greater geolocation accuracy. Smaller baseline distance

decreases observability.
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Figure 46. TDOA and T/FDOA algorithm sensitivity to baseline distance between SVs
(2000 trials)

4.5 ITL Sensitivity to the Number of Signal Collects

Another factor that influences geolocation accuracy is the number of measure-

ments received, or signal collects. For review, a collect is defined as a discrete instance

where all SVs in the cluster receive the same signal of interest. For AOA geolocation,

more signal collects means more lines of bearing, and more LOBs can lead to a more

accurate LS intersection estimate. The TDOA and T/FDOA algorithms only require

a single signal collect at each of the SVs to obtain an ITL solution. This analysis

was conducted to determine whether more received signal collects during the course

of a pass would increase geolocation accuracy from a batch processing standpoint.

Note, this average is not weighted by measurement uncertainty or collection geome-

try. First, the ITL solutions were computed with 2 collects. For AOA, this signifies
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2 LOBs being intersected. For the other algorithms, 2 ITL solutions (1 per collect)

were averaged together. Then the number of collects was increased to 4, meaning the

previous two collects and an additional 2 were used to obtain new ITL results. This

was carried on until the case with 20 collects.

4.5.1 ITL Sensitivity to Collection Geometry

Before observing the effect of increasing the number of collects it is important to

note that for the TDOA and T/FDOA algorithms 𝑀 discrete collects leads to 𝑀

discrete ITL solutions. Since a non-weighted average is taken of these 𝑀 solutions,

the overall solution could decrease if certain collects are more inaccurate due to poor

collection geometry. While GDOP is not analyzed in this research, Fig. 47 is an

example of how 10 good collects lead to 10 ITL solutions close to the true transmitter,

while Fig. 48 shows how 10 poor collects leads to a more dispersed group of 10 ITL

solutions.
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Figure 47. 10 ITL solutions obtained from 10 collects with good geometry (TFDOA4
algorithm, Tx 1, Pass 3)

Since algorithms are sensitive to collection geometry, the method of adding the

number of collects was important. Two methods were tested. In the first case (Fig.
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Figure 48. 10 ITL solutions obtained from 10 collects with poor geometry. (TFDOA4
algorithm, Tx 1, Pass 3)

49), the initial two collects were of poor geometry (at the horizon), and the collects

added were increasingly better. In the second case (Fig. 50) the initial 2 collects were

the best geometry possible, that is the smallest slant range, and the collects added

were increasingly worse due to slant range.
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Figure 49. Collection geometry for Case 1. (Tx 1, Pass 3, 10 Collects)
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Figure 50. Collection geometry for Case 2. (Tx 1, Pass 3, 10 Collects)

4.5.2 Case 1: Addition of “Better” Signal Collects

For the collection geometry in Case 1, shown in Fig. 49, the number of collects was

varied and the resulting non-weighted ITL average for each case was calculated. This

process was repeated for 2000 trials, and the RMSE of the 2000 non-weighted averages

was obtained. Then the results were normalized to observe the trends of the different

algorithms simultaneously. Figs. 51 and 52 contain the effect of the number of

collects on the ITL average for Case 1. The results are divided into the unconstrained

and constrained ITL algorithms, where constrained includes those which utilize an

Earth’s surface constraint to obtain an ITL solution (TDOA3, TFDOA2, TFDOA3,

TFDOA4).

It is seen in Figs. 51 and 52 that regardless of the ITL algorithm, accuracy of

the non-weighted average was improved with the addition of ”better” collects. This

result is to be expected. ITL solutions computed using better measurements should

be more accurate in all cases.
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Figure 51. Effect of increasing the number of signal collects on AOA and TDOA4
accuracy for Case 1 (Tx 1, Pass 3, 2000 trials, 𝜎 = 𝐶𝑅𝐿𝐵)
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Figure 52. Effect of increasing the number of signal collects on TDOA3, TFDOA2,
TFDOA3, and TFDOA4 accuracy for Case 1 (Tx 1, Pass 3, 2000 trials, 𝜎 = 𝐶𝑅𝐿𝐵)
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4.5.3 Case 2: Addition of “Worse” Signal Collects

The same process of varying the number of collects was executed again utilizing

the collection geometry from Case 2 (Fig. 50). Figs. 53 and 54 contain the effect

of increasing the number of collects for this case. Fig. 53 contains results for the

unconstrained algorithms, and Fig. 54 is for the constrained algorithms.
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Figure 53. Effect of increasing the number of signal collects on AOA and TDOA4
accuracy for Case 2 (Tx 1, Pass 3, 2000 trials, 𝜎 = 𝐶𝑅𝐿𝐵)

It is seen from Fig. 53 that even though the quality of additional signal collects

is increasingly worse, the accuracy of the AOA and TDOA4 algorithms generally

increases with the number of collects. Note that the results calculated were for the

AOA LS intersection method and the TDOA4 non-weighted ITL average. This shows

that for AOA and TDOA4 in this scenario, more signal collects benefits the overall

accuracy even when a non-weighted average is being utilized. The trend seen here for

AOA and TDOA4 was also true for Passes 1-2 and 4-5. Future work could investigate

an even wider range of collection geometries to see if this trend remains constant.

Fig. 54 shows that the accuracy of the non-weighted ITL average decreases even
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Figure 54. Effect of increasing the number of signal collects on TDOA3, TFDOA2,
TFDOA3, and TFDOA4 accuracy for Case 2 (Tx 1, Pass 3, 2000 trials, 𝜎 = 𝐶𝑅𝐿𝐵)

though more signal collects were added. What these algorithms (TDOA3, T/FDOA)

each have in common is that they incorporate the transmitter altitude constraint. The

constrained ITL solutions are sensitive to collection geometry, so that ITL solutions

calculated using collects at the horizon should be expected to degrade overall ITL

accuracy if a simple non-weighted average is being used. It is recommended that a

weighted average is used in the presence of multiple signal collects in order to see the

benefit of more collects regardless of their uncertainty.

Furthermore, it is observed from Figs. 51 - 53 that for this scenario, approxi-

mately 10-15 collects are desirable. After 10-15 collects the overall accuracy does not

significantly change.

4.5.4 Number of Collects Sensitivity Summary

For the non-weighted average approach used in this analysis, increasing the num-

ber of signal collects improved ITL accuracy for AOA and TDOA4, regardless of the
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certainty of the collects being added. For TDOA3 and the T/FDOA algorithms, in-

creasing the number of signal collects only improved the average ITL solution when

the collection geometry was better. Thus the constrained ITL algorithms (those that

utilize Tx altitude constraint) are more sensitive to collection geometry than the

unconstrained ITL algorithms (AOA and TDOA4) tested.

The overall ITL accuracy for multiple collects is influenced by the collection geom-

etry, measurement error, and the method of averaging ITL solutions. It is concluded

that for the constrained algorithms (TDOA3 and T/FDOA), a weighted average

should be utilized to take into account geometry and measurement error for each

signal collect. As discussed in Chapter 5, this research employs ML estimation and a

DTED1 grid search after using the ITL average as an initial guess, so a non-weighted

average was sufficient. But if the ITL average is being used for a final geolocation

solution, using a weighted average is recommended.

The problem with using a weighted average is that when SVs obtain measure-

ments on orbit, the collection geometry could be unknown since the location of the

transmitter is unknown. Two possible solutions for determining the collection geom-

etry could be to 1) design a SV payload that can sense the signal’s AOA in addition

to T/FDOA or 2) compute an ITL solution, then use the ITL to recursively estimate

collection geometry.

4.6 ITL Sensitivity to SV Location Error

The accuracy of GPS receivers in determining SV position and velocity has im-

proved over the years, making them a good choice for on-board CubeSat navigation,

but there is still enough location error present to affect RF geolocation accuracy. The

effect of absolute and relative SV position and velocity error on geolocation accuracy

is analyzed in this section. The method of corrupting the SV positions and velocities
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is seen in Sec. 3.5.1.

4.6.1 Absolute Position Knowledge Error

For each ITL algorithm (AOA, TDOA3, etc.) the geolocation error was calculated

for different absolute position errors. The absolute position error can be thought of

as the error in cluster positioning, with the exception of 1-SV AOA. Initially, the

minimum number of collects was simulated to obtain a solution, and 10,000 trials

were run for each increment of position error. The results for AOA and TDOA3 are

seen in Figs. 55 and 56.
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Figure 55. AOA algorithm sensitivity to absolute position error (Tx 1, Pass 3, 10
collects, 10,000 trials)

It was observed that the ITL error was highly sensitive to position error, the

way it was modeled in the simulation, which was a random Gaussian variable in 3

ECEF directions. The number of trials was increased to 100,000 and the RMSE still

fluctuated. This high sensitivity of the ITL algorithms was seen for each of the SV

location error (absolute and relative position and velocity) analyses (See App. C).
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Figure 56. TDOA3 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 1
collect, 10,000 trials)

Since random variables were generated independently for each trial, outliers may have

caused increased ITL error, causing RMSE to be increased for a particular trial. It

is concluded that a wide range of performance could be expected in the presence of

SV location error, especially when only one or a few signal collects are obtained.

Then the simulation was rerun using 30 different signal collects, so that there was

some more diversity in collection geometry. The ITL error due to absolute position

knowledge error for this new configuration is seen in Figs. 57 - 62.

The effect of absolute position error on AOA error can be traced to Eq. A.5 in

App. A.1. The origin of the line of bearing d0 is corrupted when s1 is corrupted.

The effect of absolute position error e𝑝 impact on TDOA error is observed from

the general TDOA equation Eq. A.18 in App. A.2. Here Eq. A.18 is rewritten to
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Figure 57. AOA algorithm sensitivity to absolute position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 58. TDOA3 algorithm sensitivity to Absolute Position Error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 59. TDOA4 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 30
collects, 10,000 trials)

include s̃𝑖 which is defined as s𝑖 + e𝑝.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = s̃𝑇𝑖 s̃𝑖 − s̃𝑇1 s̃1 − 2(s𝑖 − s1)
𝑇u

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = (s𝑖 + e𝑝)
𝑇 (s𝑖 + e𝑝)− (s1 + e𝑝)

𝑇 (s1 + e𝑝)− 2(s𝑖 − s1)
𝑇u

(4.3)

An increase of the absolute position error e𝑝 leads to an increase in TDOA equation

defect.

The general T/FDOA equation defect is also influenced by position error, similar

to the TDOA equation. The T/FDOA algorithms utilize the TDOA equation Eq.

4.3, but also the general T/FDOA equation Eq. A.48 in App. A.3.1. The T/FDOA

equation is rewritten with s̃𝑖 = s𝑖 + e𝑝 in Eq. 4.4.

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s̃𝑇𝑖 ṡ𝑖 + 2s̃𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑖 = 2, 3, ..., 𝑆 (4.4)

s̃𝑖 is substituted with s𝑖 + e𝑝 and the 4th and 5th terms of Eq. 4.4 are expanded in
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Figure 60. TFDOA2 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 61. TFDOA3 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 62. TFDOA4 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 30
collects, 10,000 trials)

Eq. 4.5.

−2s̃𝑇𝑖 ṡ𝑖 + 2s̃𝑇1 ṡ1 = −2(s𝑖 + e𝑝)
𝑇 ṡ𝑖 + 2(s1 + e𝑝)

𝑇 ṡ1

= −2s𝑇𝑖 ṡ𝑖 − 2e𝑇𝑝 ṡ𝑖 + 2s𝑇1 ṡ1 + 2e𝑇𝑝 ṡ1

= −2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 − 2e𝑇𝑝 (ṡ𝑖 − ṡ1)

(4.5)

It is seen in Eq. 4.5 how an increase in e𝑝 influences the 4th and 5th terms of the

general T/FDOA equation, leading to increased equation defect.

For the case with 30 different signal collects, which is the case with a wider range

of geometric diversity, the AOA, TDOA, and T/FDOA algorithms displayed a nearly

linear response to absolute position error. Different results could be expected if the

SV position error was modeled differently, that is other than independent Gaussian

random variables of equal uncertainty in all three ECEF directions, and if the collec-

tion geometry was less diverse, as observed in Figs. 55 and 56.
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4.6.2 Absolute Velocity Knowledge Error

The absolute velocity error is only factored into the T/FDOA algorithms be-

cause they must be related to the frequency difference measurements according to

the doppler equation Eq. 2.8. The ITL error due to absolute velocity knowledge

error for the 30-collect case is seen in Figs. 109 - 111. It is seen that for TF-
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Figure 63. TFDOA2 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)

DOA2 (Fig. 63) the ITL error increases nearly linearly with absolute velocity error

for this case. The TFDOA3 and TFDOA4 algorithms are less sensitive to absolute

velocity error. The ITL error for TFDOA3 and T/FDOA is less than 2 km for all

of the velocity errors tested. There is fluctuation in the ITL error for TFDOA3 and

TFDOA4, but as previously explained and seen in App. C the algorithms are highly

sensitive to SV location error the way it was modeled in this research. There were

outliers in the noise realizations for a few of the cases that caused the TFDOA3 or

TFDOA4 error to be magnified.

The second T/FDOA equation Eq. A.48 found in App. A.3.1 can be observed to
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Figure 64. TFDOA3 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 65. TFDOA4 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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see how absolute velocity error impacts T/FDOA equation defect. The 4th and 5th

terms in Eq. A.48 are corrupted in the presence absolute velocity error.

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s𝑇𝑖 ˜̇s𝑖 + 2s𝑇1 ˜̇s1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑖 = 2, 3, ..., 𝑆 (4.6)

If ˜̇s𝑖 is defined as ṡ𝑖 + e𝑣, then the 4th and 5th term can be rewritten and simplified

to observe the effect of e𝑣 as seen in Eq. 4.7. Notice that the term on the right side

of Eq. 4.6 is impacted by relative velocity error, so it will be ignored here.

−2s𝑇𝑖 ˜̇s𝑖 + 2s𝑇1 ˜̇s1 = −2s𝑇𝑖 (ṡ𝑖 + e𝑣) + 2s𝑇1 (ṡ1 + e𝑣)

= −2s𝑇𝑖 ṡ𝑖 − 2s𝑇𝑖 e𝑣 + 2s𝑇1 ṡ1 + 2s𝑇1 e𝑣

= −2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 − 2(s𝑇𝑖 − s𝑇1 )e𝑣

(4.7)

Therefore the magnitude of equation defect is related to e𝑣 by the true difference in

SV ECEF positions.

4.6.3 Relative Position Knowledge Error

The effect of relative position knowledge error on ITL accuracy is seen in Figs. 66

- 70. It is seen that compared with the error in absolute position and velocity, relative

position error is costly for ITL accuracy. In addition, the trends seen in Figs. 69 and

70 show that for this case TFDOA3 and TFDOA4 were highly sensitive to relative

position error. It is important to note that these results fluctuate greatly based on

the collection geometry. For example, in App. C the TFDOA3 and TFDOA4 error

as a function of relative position error for only 1 collect in Pass 3 is seen in Figs.

115 and 116. The change in the collection diversity greatly influences the impact of

position error, and even when the collection geometry is held constant the trend in

resulting ITL error is unclear. Another effect observed is that the TDOA4 error is the
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largest comparatively and it varies almost logarithmically with relative position error.

Recall that does not necessarily mean the algorithm is worse in general, because it is

not utilizing the surface of the Earth assumption like the other TDOA and T/FDOA

algorithms.
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Figure 66. TDOA3 algorithm sensitivity to relative position error (Tx 1, Pass 3, 30
collects, 10,000 trials)

The relative position accuracy has an effect on the TDOA and T/FDOA equation

defect. Eq. 4.8 contains the general TDOA and T/FDOA equations and the corrupted

variables due to relative position error.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = s̃𝑇𝑖 s̃𝑖 − s𝑇1 s1 − 2(s̃𝑖 − s1)
𝑇u 𝑇𝐷𝑂𝐴

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s̃𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑇/𝐹𝐷𝑂𝐴

𝑖 = 2, 3, ..., 𝑆

(4.8)

If the absolute ECEF position of the 𝑖𝑡ℎ SV is defined with respect to the reference

satellite s1, then the relative position error e𝑝,𝑟𝑒𝑙 impacts s̃𝑖 because of the way the
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Figure 67. TDOA4 algorithm sensitivity to relative position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 68. TFDOA2 algorithm sensitivity to relative position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 69. TFDOA3 algorithm sensitivity to relative position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 70. TFDOA4 algorithm sensitivity to relative position error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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relative orbits are determined in this research. Thus an increase in e𝑝,𝑟𝑒𝑙 affects terms

3 and 5 in the TDOA equation and term 4 in the T/FDOA equation, leading to

overall ITL error.

4.6.4 Relative Velocity Knowledge Error

The ITL accuracy as a function of relative velocity knowledge error e𝑣,𝑟𝑒𝑙 is seen

in Figs. 71 - 73. For this case, dozens of cm/s could lead to hundreds of kilometers

of T/FDOA error. The TFDOA3 algorithm can handle small relative velocity error

well, but the response is also dependent on the collection geometry, so no sweeping

conclusions can be made based on these results. The case with only 1 collect is seen

in Figs. 117 - 119 in App. C. The relative velocity error only has impact on the
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Figure 71. TFDOA2 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)

T/FDOA equation. The T/FDOA equation is rewritten here to show the effect of

relative velocity error. If the ECEF velocity of the 𝑖𝑡ℎ SV is defined with respect to
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Figure 72. TFDOA3 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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Figure 73. TFDOA4 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 30
collects, 10,000 trials)
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the reference SV ṡ1, then ṡ𝑖 is corrupted.

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s𝑇𝑖 ˜̇s𝑖 + 2s𝑇1 ṡ1 = −2(˜̇s𝑖 − ṡ1)
𝑇u 𝑇/𝐹𝐷𝑂𝐴

𝑖 = 2, 3, ..., 𝑆

(4.9)

The 4th and 6th terms are corrupted as the magnitude of e𝑣,𝑟𝑒𝑙 increases. The impact

of e𝑣,𝑟𝑒𝑙 on ITL error also depends on the SV locations and the transmitter location.

4.6.5 SV Location Error Sensitivity Summary

Overall, the results in this section show that the ITL algorithms are unstable

in the presence of position and velocity error for the number of trials run. It is

likely that increasing the number of trials beyond 100,000 could make the trends

more visible. Furthermore, the effects of SV location error are highly dependent on

the collection geometry. No sweeping conclusions were made based on these results

except that increases in SV positioning error cause the ITL error to increase, and

high positioning accuracy is crucial for geolocation accuracy.

4.7 ITL Sensitivity to Measurement Error

The sensitivity of each of the ITL algorithms to AOA, TDOA, and FDOA mea-

surement error has been explored to some extent in [4], [3], and [23]. The purpose of

this section is to investigate the sensitivity of these algorithms to measurement noise

for a 500km orbit CubeSat cluster.

4.7.1 AOA Algorithm Sensitivity to AOA Measurement Error

The AOA measurement error (𝜎𝛼, 𝜎𝜖) impact on AOA geolocation error is shown

in Fig. 74. Note that this analysis focuses on AOA measurement error, but according

(3.16) the attitude determination error 𝜎𝑎𝑡𝑡 could have the same effect. The relation-
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Figure 74. AOA algorithm sensitivity to angle measurement error (Tx 1, Pass 3, 2000
trials, 𝜎𝛼 = 𝜎𝜖)

ship between ITL and measurement error is nearly linear. The trend seen in Fig. 74

is intuitive geometrically. Fig. 32 provides a visual of the relation between angle error

and estimate uncertainty. This relationship is indirect for the AOA algorithm since

there is trigonometry and a LS intersection involved, but overall it was an expected

result. Notice that errors of greater than 0.1 deg could yield error worse than 50

km. While this error could be diminished with ML estimation and the application

of a DEM, it magnifies the importance of accurate angle measurement and attitude

determination in a CubeSat geolocation system.

4.7.2 ITL Sensitivity to Differential Time Offset Error

The ITL error as a function of DTO error 𝜎𝑑𝑡𝑜 was investigated. The effect of

DTO error on ITL error is shown in Figs. 75 - 79. The weighting matrix W in the

TFDOA3 algorithm (same as TFDOA4) was set to identity, even though the DFO

error 𝜎𝑑𝑓𝑜 was zero for this analysis. Note that the magnitude of ITL error for the
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T/FDOA algorithms is optimistic, because in reality 𝜎𝑑𝑓𝑜 would be nonzero.
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Figure 75. TDOA3 algorithm sensitivity to DTO error (Tx 1, Pass 3, 2000 trials,
𝜎𝑓 = 0𝐻𝑧)

It is seen from Figs. 75 - 79 that the ITL error increases with DTO error, as

expected. Furthermore, the ITL error relationship is nearly linear for the DTO errors

observed, with the exception of TDOA4. It was reaffirmed that TDOA4 is most

sensitive to measurement error, with nearly 800 km RMSE for 150 ns DTO error.

The other algorithms have ITL RMSE of 25 km or less. In addition, the TDOA3 and

TFDOA2 algorithm are almost identically sensitive to DTO error for this case of zero

DFO error.

The DTO error impacts the TDOA and T/FDOA equation errors, which in turn

influences the algorithm accuracy. The general TDOA and T/FDOA equations for

corrupted measurements are seen in Eq. 4.10. TDOA measurements 𝜏 are converted
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Figure 76. TDOA4 algorithm sensitivity to DTO error (Tx 1, Pass 3, 2000 trials,
𝜎𝑓 = 0𝐻𝑧)
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Figure 77. TFDOA2 algorithm sensitivity to DTO error (Tx 1, Pass 3, 2000 trials,
𝜎𝑓 = 0𝐻𝑧)
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Figure 78. TFDOA3 algorithm sensitivity to DTO error (Tx 1, Pass 3, 2000 trials,
𝜎𝑓 = 0𝐻𝑧)
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Figure 79. TFDOA4 algorithm sensitivity to DTO error(Tx 1, Pass 3, 2000 trials,
𝜎𝑓 = 0𝐻𝑧)
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to range differences 𝑟𝑖1 according to Eq. 2.5.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = s𝑇𝑖 s𝑖 − s𝑇1 s1 − 2(s𝑖 − s1)
𝑇u 𝑇𝐷𝑂𝐴

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑇/𝐹𝐷𝑂𝐴

𝑖 = 2, 3, ..., 𝑆

(4.10)

It can be observed in Eq. 4.10 that when all other variables are held constant, a more

corrupt 𝑟𝑖1 leads to greater equation defect.

4.7.3 ITL Sensitivity to Differential Frequency Offset Error

The effect of DFO error 𝜎𝑑𝑓𝑜 on ITL accuracy is seen in Figs. 80 - 82. Note

that the weighting matrix W in the TFDOA3 algorithm was set to identity, even

though the DTO error 𝜎𝑑𝑡𝑜 was zero. As expected, the accuracy of the T/FDOA
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Figure 80. TFDOA2 algorithm sensitivity to DFO error (Tx 1, Pass 3, 2000 trials,
𝜎𝜏 = 0𝑠)

algorithms increased as the number of SVs is increased. More SVs allows for more

measurements, leading to more accurate estimates. The DFO error impacts the range
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Figure 81. TFDOA3 algorithm sensitivity to DFO error (Tx 1, Pass 3, 2000 trials,
𝜎𝜏 = 0𝑠)
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Figure 82. TFDOA4 algorithm sensitivity to DFO error (Tx 1, Pass 3, 2000 trials,
𝜎𝜏 = 0𝑠)
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rate measurements 𝑟̇𝑖1 which are derived from the frequency difference measurements

𝜏 (Eq. 2.6).

2𝑟𝑖1 ˜̇𝑟𝑖1 + 2𝑟𝑖1𝜌̇1 + 2˜̇𝑟𝑖1𝜌1 − 2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑇/𝐹𝐷𝑂𝐴

𝑖 = 2, 3, ..., 𝑆

(4.11)

The 1st and 3rd terms of the T/FDOA equation Eq. 4.11 are corrupted by increase

in DFO error.

4.8 Summary

The sensitivity of the initial transmitter localization (ITL) algorithms, namely

AOA, TDOA3, TDOA4, TFDOA2, TFDOA3, and TFDOA4, to different system

parameters was analyzed. Although each algorithm has its strengths and weaknesses,

and they cannot be fully compared and constrasted, there were some general trends

observed. The TDOA4 method from [24] utilized in this research does not require the

transmitter to be Earth-constrained, so it is solving a slightly different problem. Even

so, it is important to note that TDOA4 displayed the greatest ITL error amongst

all the methods, so for the purposes of conducting strictly geolocation of surface-

constrained transmitters or even low altitude aerial vehicles, it could be advantageous

to explore the constrained version of TDOA4 derived in [23].

Furthermore, in practice TDOA3, TDOA4, and TFDOA2 were problematic in

the presence of high measurement or navigation errors. While these algorithms only

require one set of measurements, or one collect, to obtain an ITL solution, there

are times when the solution is out of the coverage area or more than hundreds of

kilometers away from the true transmitter location. These erroneous solutions must

be identified and discarded. Another problem is solution ambiguity. It was assumed

in this chapter that multiple ITL solutions could be disambiguated, but this could be
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more challenging in practice, especially with TFDOA2 where in some cases there are

two viable solutions in the coverage area. The ITL algorithms themselves are found

in detail in App. A, and some further conclusions are discussed in Sec. 6.1.

As seen throughout this chapter, the ITL solutions themselves are very inaccurate

in the presence of measurement noise, navigation error, and poor collection geometry.

However, depending on the application, these ITL solutions can be very useful as ini-

tial guesses for further estimation techniques, such as a Kalman filter or the iterative

Gauss-Newton algorithm used in this thesis to find the maximum likelihood estimate.
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5. System Level Performance

This chapter contains 4 major sections. Sec. 5.1 and Sec. 5.2 are intermediate

analyses. Sec. 5.1 is an investigation of how the surface of the earth constraint utilized

for the TDOA3, TFDOA2, and TFDOA3 algorithms impacts geolocation accuracy.

Sec. 5.2 demonstrates the benefit of implementing maximum likelihood estimation

and a DTED1 grid search. Sec. 5.3 is a geolocation performance analysis of a 1-

4 CubeSat cluster in a 500km orbit. Sec. 5.4 contains the process of utilizing the

simulation to obtain a geolocation system design based on requirements.

5.1 Effect of Earth’s Surface Constraint on Accuracy

It was established in Sec. 2.4.4 that executing the ITL algorithm with an incorrect

transmitter altitude assumption leads to geolocation error [3, 23]. This section com-

pares three different Earth’s surface constraints: spherical Earth, WGS84, and Level

0 DTED (DTED0). It is demonstrated how using a DTED0 Earth constraint for the

TDOA3, TFDOA2, TFDOA3, and TFDOA4 algorithms greatly improves geolocation

accuracy, thus justifying its use in the geolocation simulation.

Methods For each ITL algorithm requiring an altitude assumption (TDOA3,

TFDOA2, TFDOA3, and TFDOA4), three Earth constraints were tested: 1) Spheri-

cal Earth with mean radius 6371km, 2) WGS84 Ellipsoid, and 3) DTED0 (GMTED

2010, see Sec. 2.6). The method of applying the WGS84 and DTED0 constraints is

discussed in App. A.2.2.

It is assumed that the transmitter is constrained to the Earth’s surface, so for the

purposes of this analysis the altitude is assumed to be the Earth’s geocentric radius

𝑟𝑒 at the transmitter’s latitude and longitude.
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In reality, the land elevation varies with latitude and longitude, so 𝑟𝑒 is variable.

For the WGS84 and DTED0 surfaces, the elevation at the transmitter location can be

expressed as an ellipsoid height ℎ𝑢. The height ℎ𝑢, can be converted to a geocentric

radius 𝑟𝑒 if the latitude and longitude are known. If the transmitter location is

unknown, then its altitude 𝑟𝑒 is also unknown, but can be estimated. The estimated

altitude 𝑟𝑒 is shown in (5.1).

𝑟𝑒 = 𝑟𝑒 + 𝑒𝑎𝑙𝑡 (5.1)

The corrupt altitude 𝑟𝑒 is an input for the three ITL algorithms mentioned above.

For this analysis, a single noise-free geolocation scenario was used to observe how a

corrupt input altitude 𝑟𝑒 affects ITL accuracy when 3 different Earth constraints are

used.

For each Earth constraint and ITL algorithm, the initial altitude 𝑟𝑒 was corrupted

with altitude errors 𝑒𝑎𝑙𝑡 ranging from 0-10 km. These input altitude errors form

the 𝑥-axis of Figs. 83 and 84. There were two results recorded for this test: the

output altitude error (83) and the ITL accuracy 84. The method of implementing

the WGS84 and DTED0 Earth constraints required updating the altitude guess based

on the transmitter location estimate û, so the output altitude error is the difference

between final altitude estimate 𝑟𝑓 and the truth 𝑟𝑒. The ITL accuracy in Fig. 84 is

simply the accuracy of û obtained by the TDOA3 algorithm. TFDOA2, TFDOA3,

and TFDOA4 algorithm results were omitted because the results were redundant.

Results The output altitude error and ITL error for different input altitude

errors are seen in Figs. 83 and 84. Note that the trends in Fig. 83 and Fig. 84 are

identical. Together the graphs show how an inaccurate estimate of the transmitter

altitude leads to an inaccurate estimate of the transmitter ECEF location û.

For the spherical Earth constraint, Fig. 83 shows that the output altitude error
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Figure 83. TDOA3 final ℎ𝑢 error for three different surface of the Earth constraints
(Tx 4 with true WGS84 height = 1.39 km, Pass 3)
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Figure 84. TDOA3 geolocation error for three different surface of the Earth constraints
(Tx 4 with true WGS84 height = 1.39 km, Pass 3)
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is the same as the input altitude error, which is to be expected, since no iteration

is involved. Furthermore, Fig. 84 shows that an input altitude error of 2 km could

lead to nearly 10 km ITL error. This error is costly for designers seeking to obtain

sub-kilometer geolocation accuracy.

For the WGS84 constraint, it can be seen in Fig. 83 that despite variable input

altitude error, the output altitude error converges to the true transmitter ellipsoid

height ℎ𝑢, which is 1.39 km for this case. In other words, when the WGS84 surface is

used as a constraint, the transmitter height ℎ𝑢 is assumed to be zero, so the resulting

output altitude error will be equivalent to the true ℎ𝑢. If the ℎ𝑢 was 0.5 km, using

the WGS84 as a constraint would result in 0.5 km output altitude error. Thus the

negative impact of using the WGS84 as a constraint depends on the true transmitter

height. In addition, the geolocation error is roughly 5 km as seen in

The DTED0 constraint, was shown to have superior accuracy in all cases tested.

As seen in Fig. 83 and Fig. 84, despite input altitude errors of up to 10 km, the

output altitude and ITL errors are all tens of meters or less. Thus the usage of the

DTED0 constraint in the geolocation simulation is justified. The question might be

asked: “what is the computational expense of utilizing the DTED0 constraint?” The

application of the DTED0 constraint required iteration, but only 2 or 3 iterations

were required. Furthermore, it was observed that for an entire pass of 𝑀 collects,

the altitude iteration only needed to be calculated for the first collect. After the first

ITL solution, the altitude estimate 𝑟𝑒 stayed nearly constant for the remainder of the

pass, reducing computation time required by DTED0 iteration.

5.2 Effectiveness of MLE and DTED1 Application

For the second intermediate analysis, the effectiveness of the MLE and DTED1

application methods (Secs. 3.6 and 3.7) was evaluated. Bailey [4] demonstrated the
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effectiveness of maximum likelihood estimation in improving CubeSat AOA geoloca-

tion estimates, and Schmidt [8] showed how applying digital elevation models could

improve AOA and TDOA accuracy. This section contains analysis of the effectiveness

of the aforementioned methods for each of the geolocation techniques: AOA, TDOA,

and T/FDOA. The questions to be answered in this analysis for each technique are:

∙ For a pass of 𝑀 collects, is computing an ML estimate necessary? How much

does it improve the raw ITL solutions or the average of ITL solutions for a pass?

∙ For a pass of 𝑀 collects, is conducting a DTED1 grid search effective in im-

proving accuracy?

Methods A single-scenario geolocation simulation Fig. 13 was executed to

obtain the û𝑚𝑙𝑒 and û𝑑𝑡𝑒𝑑 for each algorithm (AOA, TDOA3, etc.) given the system

parameters in Table 13. As a reminder, for each algorithm and pass geometry chosen,

the ITL solution was calculated (û𝑖𝑡𝑙), the average ITL was used to initialize the

Gauss-Newton algorithm to find û𝑚𝑙𝑒, and û𝑚𝑙𝑒 was used as a seed in the DTED1

grid search, to finally obtain û𝑑𝑡𝑒𝑑.

This process of obtaining û𝑑𝑡𝑒𝑑 was executed for each algorithm (AOA, TDOA,

etc.) for 500 MC trials. In order to investigate the effectiveness of MLE and DTED1

application the range RMSE was computed for each algorithm as specified in Sec. 3.8.

Furthermore, the percent improvement from mean ITL RMSE to MLE RMSE was

computed to evaluate MLE effectiveness, and the percent improvement from MLE

RMSE to DTED1 RMSE was calculated to evaluate DTED1 effectiveness.

5.2.1 Effectiveness of MLE and DTED1 Grid Search

It is important to note first that the method of obtaining û𝑚𝑙𝑒, the maximum

likelihood estimate, is the Gauss-Newton algorithm. This algorithm is completely

127



Table 13. Parameters for Effectiveness of MLE/DTED1 Test

Parameter Value Remarks

Transmitter 2 [15.5∘, 100.5∘, 26 m]

SV Altitude 500 km From [10]

Baseline 15 km Obtained from Fig. 46

Absolute Position 5 m Assuming on-board GPS receiver

Absolute Velocity 20 cm/s Assuming on-board GPS receiver

Attitude Determi-
nation

0.2∘ State of the art for star tracker is is 0.007∘

[18]

Relative Position 0.5 m Assuming Differential GPS

Relative Velocity 5 cm/s Assuming Differential GPS

Angle of Arrival 0.3∘ Error in Az and El angle measurements,
due to hardware and MUSIC algorithm er-
ror

Differential Time
Offset (DTO)

100 ns Time difference measurement error, due to
hardware and Complex Ambiguity Func-
tion (CAF) accuracy

Differential Freq.
Offset (DFO)

10 Hz Frequency difference measurement error,
due to hardware and CAF accuracy

separate from the ITL algorithms previously discussed. The difference is that the

Gauss-Newton algorithm requires an initial guess and measurements, while ITL al-

gorithms do not require an initial guess. And finally, the Gauss-Newton algorithm

is not influenced by system parameters like Number of Collects or Pass Geometry in

the same way the ITL algorithms are. Thus the conclusions from Chapter 4 should

not be directly applied to the MLE and DTED1 processes.

The RMSE of the ITL, mean ITL, MLE, and DTED1 geolocation solutions can

be observed in Table 14. In Table 15, the percent improvement is shown for each of

the algorithms.

Effectiveness of MLE It is apparent from Tabs. 14 and 15 that MLE

improves accuracy significantly for TDOA3, TDOA4, TFDOA3 and TFDOA4. MLE
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Table 14. Geolocation accuracy with the application of MLE and a DTED1 grid search

RMSE (km)

Algorithm Estimate Type Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

AOA

ITL 3.32 3.56 4.24 5.20 6.88

MLE 1.78 2.64 3.52 4.96 6.73

DTED1 0.67 1.99 2.95 4.34 6.08

TDOA3

ITL 99.37 104.66 103.09 124.81 140.58

Mean ITL 18.30 19.42 18.49 22.19 29.92

MLE 1.07 1.29 1.63 2.27 3.19

DTED1 0.64 0.85 1.10 1.49 2.21

TDOA4

ITL 1329.58 955.73 919.42 972.12 1134.30

Mean ITL 391.66 253.35 339.96 548.21 825.85

MLE 59.42 31.97 63.06 73.97 179.39

DTED1 49.31 24.91 63.05 73.96 179.38

TFDOA2

ITL 481.65 372.09 270.75 1060.00 772.58

Mean ITL 114.77 87.77 51.87 1024.85 748.03

MLE 117.90 17.35 21.84 1027.58 755.51

DTED1 111.15 2.06 2.12 1026.99 751.62

TFDOA3

ITL 396.56 395.69 136.39 99.62 101.35

Mean ITL 68.40 80.88 26.31 19.77 21.18

MLE 1.06 1.28 1.63 2.26 3.18

DTED1 0.64 0.86 1.10 1.48 2.21

TFDOA4

ITL 329.41 315.50 111.71 87.81 76.04

Mean ITL 56.49 56.80 24.00 17.30 17.54

MLE 0.80 0.97 1.22 1.72 2.42

DTED1 0.51 0.68 0.86 1.16 1.66
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Table 15. Percent improvement of geolocation accuracy due to MLE and DTED1
application

Percent Improvement (%)

Algorithm Estimate Type Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

AOA
MLE 46.6 25.7 17.0 4.4 2.2

DTED1 62.5 24.8 16.3 12.6 9.6

TDOA3
MLE 94.2 93.4 91.2 89.8 89.3

DTED1 39.9 33.6 32.6 34.3 30.6

TDOA4
MLE 84.8 87.4 81.5 86.5 78.3

DTED1 17.0 22.1 0.01 0.01 0.005

TFDOA2
MLE -2.7 80.2 57.9 -0.3 -1.0

DTED1 5.7 88.1 90.3 0.1 0.5

TFDOA3
MLE 98.5 98.4 93.8 88.6 85.0

DTED1 39.7 33.1 32.5 34.5 30.6

TFDOA4
MLE 98.6 98.3 94.9 90.1 86.2

DTED1 36.0 30.4 29.7 32.8 31.3

improved the mean ITL estimates by more than 78% for TDOA3, TDOA4, TFDOA3

and TFDOA4. This astounding improvement justifies the usage of MLE in this

simulation.

AOA was also found to improve with MLE, but not as significantly as the other

algorithms. It improved as much as 46.6% in Pass 1 but as little as 2.2% in Pass 5.

The magnitude of MLE improvement from the LS intersection estimate obtained in

AOA ITL is consistent with the results of Bailey [4] for a 500 km altitude CubeSat.

While MLE proved to be effective for the previously mentioned algorithms, the

ML estimate for TFDOA2 was nominally better than the non-weighted ITL average,

as seen in Tabs. 14 and 15. The MLE inaccuracy was not due to divergence of

the Gauss-Newton algorithm, since diverged estimates were discarded. The Gauss-

Newton algorithm converged on estimates far from the transmitter in the presence

of measurement noise. It is hypothesized that the ambiguity of the dual-satellite
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TDOA/FDOA localization circle and the fact that the MLE is unconstrained by the

Earth’s surface leads to convergence on erroneous transmitter locations. This could

be investigated in future work or an alternate method could be implemented for

TFDOA2.

Another trend seen in the ML estimates was that the percent improvement of

MLE was greatest for Pass 1 and least for Pass 5. This trend is visible for AOA,

TDOA3, TFDOA3, and TFDOA4. Similarly, as seen in Table 14, the ML estimate

accuracy is greater for the overhead pass and decreases as passes become near to the

horizon. It’s important to note that the effect of pass type on MLE accuracy is not

necessarily identical to the effect of pass type on ITL accuracy, which was explored

in Sec. 4.3.

Effectiveness of DTED1 Grid Search It is also seen from Tabs. 14 and

15 that the DTED grid search improved the geolocation accuracy in all cases, however

the improvement for the TDOA4 and TFDOA2 algorithms was very minimal in some

instances.

For TDOA3, TFDOA3, and TFDOA4, the DTED1 grid search improved estimates

between 30-40%. The DTED1 constraint also proved to be effective for AOA, although

the effectiveness was highly dependent on the pass type. At the horizon, the grid

search only improved the accuracy 9.6%, but when the pass was overhead the grid

search improved accuracy by 62.5%.

TDOA4 and TFDOA2 did not benefit from the DTED1 constraint in some cases.

It can be observed that for both TDOA4 and TFDOA2, the passes that experienced

greatest DTED1 grid search improvement in Table 15 were the passes with smallest

MLE error in Table 14. For this case the DTED1 grid search is helpful when the MLE,

which is used as the grid search center point, is accurate to within about 50 km. In

reality, if the geolocation estimate is more than 50 km off, the effect of transmitter
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altitude error is relatively minuscule.

Solutions obtained by DTED1 grid search are also different than the ones ob-

tained by MLE because they lie approximately on the Earth’s surface, which can

reduce ambiguity for a transmitter known to be terrestrial. The performance of the

DTED1 constraint could change when the measurement error or SV navigation error

is changed. However overall, the DTED1 grid search implemented in this research

was shown to be effective in reducing geolocation error. Future refinement of the grid

search algorithm and/or application of a higher resolution DEM could lead to even

greater accuracy.

5.2.2 Computation Time

While the application of MLE and DTED1 was shown to improve the geolocation

accuracy, the question could be asked: “what is the computational trade off?” The

average computation time for the Gauss-Newton algorithm, which was used to obtain

û𝑚𝑙𝑒, and the DTED1 grid search used to obtain û𝑑𝑡𝑒𝑑, are seen in Table 16 for each

geolocation technique (AOA, TDOA3, etc.). The times in Table 16 are for an entire

pass of 𝑀 collects. Overall, the time to compute û𝑚𝑙𝑒 and û𝑑𝑡𝑒𝑑 is less than 2 seconds

total.

5.3 Performance Analysis

The final analysis included in this research is the evaluation of the overall accu-

racy of a 1-4 CubeSat geolocation system implementing the methods discussed in

Chapter 3. All 6 geolocation techniques (AOA, TDOA3, etc.) are evaluated for the

appropriate number of SVs. The objectives are 1) to determine the achievable ge-

olocation accuracy given a nominal scenario and 2) to investigate the measurement

error allowable to obtain sub-kilometer accuracy.
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Table 16. Computation time for MLE and DTED1 grid search

Geolocation

Technique

Gauss-Newton

Algorithm (s)

DTED1 Grid

Search (s)

AOA 3.15e-3 1.15

TDOA3 1.40e-3 0.96

TDOA4 2.30e-3 0.86

TFDOA2 2.70e-3 1.64

TFDOA3 2.50e-3 0.97

TFDOA4 3.00e-3 0.90

Note: Tx 1, average time for 5 pass types, 500 trials

Methods The AOA, TDOA, and FDOA error allowed for a 1-4 CubeSat

geolocation cluster in a 500km, 64∘ inclination orbit was investigated. All system

parameters were fixed except the AOA, TDOA, and FDOA error, as shown in Table

17. The AOA error includes error due to azimuth/elevation measurement and SV

attitude knowledge error (Eq. 3.16). TDOA error includes both differential time

offset (DTO) and timing synchronization error (Eq. 3.17). FDOA error includes

DFO and all other frequency knowledge errors (Eq. 3.18). Therefore, as an example,

if angle measurement accuracy is poor the system designer can compensate with

accurate attitude determination.

The navigation errors were chosen based on the state of the art [18] and the

CanX mission [29], which are discussed in Sec. 2.1. These navigation errors remained

fixed for this analysis. Furthermore, the relative SV geometry and baseline distance

remained constant.

The transmitter type utilized for this analysis was a fixed-site, isotropic trans-

mitter seen in Fig. 15. For each pass, collects were arbitrarily simulated every 24

seconds, so that Pass 1 obtained 30 collects. Thus the line of sight was the only
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constraint and the effect of transmitter beam width on geolocation accuracy could be

removed. A radar with properties detailed in Fig. 16 was also simulated to observe

how the results changed for a sweeping, finite beam width transmitter.

Table 17. Performance Analysis Parameters

Parameter Value Remarks

Transmitter 1 [0.5∘, 100.5∘, 104 m]

SV Altitude 500 km From [10]

Baseline 15 km Obtained from Fig. 46

Absolute Position 5 m Assuming on-board GPS receiver

Absolute Velocity 20 cm/s Assuming on-board GPS receiver

Relative Position 0.5 m Assuming Differential GPS

Relative Velocity 5 cm/s Assuming Differential GPS

AOA Error [0.03∘,0.3∘] Includes Az/El measurement and SV at-
titude knowledge errors

TDOA Error [40, 150] ns Includes DTO measurement and timing
synchronization errors

FDOA Error [10, 250] Hz Includes DFO measurement and other fre-
quency errors

A geolocation simulation Fig. 13 was executed for each technique. The geolocation

RMSE after the DTED1 grid search was calculated for at least 500 trials and plotted

as a function of the measurement error. It is recommended for future work to run

more trials to obtain more statistically stable results.

5.3.1 AOA Error Allowed

The effect of angle of arrival error on the geolocation estimate when DTED1 sur-

face is applied is seen in Fig. 85. For overhead passes the SV can have up to 0.3∘

angle measurement and attitude knowledge error and still achieve accuracy of less

than 500 m RMSE. Passes close to the horizon are more demanding on AOA mea-

surement accuracy. Less than 0.05∘ AOA error is required to achieve sub-kilometer

accuracy using the method in this research. The system designer must decide whether
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Figure 85. Effect of AOA measurement error on AOA geolocation accuracy with ap-
plication of DTED1 Earth constraint (2000 trials)

obtaining accurate estimates for near-horizon passes is worth the cost of increasing

the AOA measurement and attitude determination accuracy requirements.

5.3.2 TDOA Error Allowed

The effect of the TDOA error on geolocation estimates with the application of a

DTED surface constraint is seen in Figs. 86 - 89. For the T/FDOA algorithms the

FDOA error was held constant throughout the analyses. The FDOA error was set to

10 Hz. Note that for generality the FDOA error is nondimensionalized by the signal

carrier frequency, which is 1.315 GHz. For TDOA3, the geolocation error increases

with TDOA error, as expected. It is seen from Fig. 86 that less than 50 ns error is

required to achieve sub-kilometer accuracy for all pass types. Greater TDOA error

is tolerable to achieve sub-kilometer accuracy for overhead passes, but it is less likely

that for an unknown transmitter only overhead passes will occur.

The TDOA4 geolocation error as a function of TDOA error is seen in Fig. 87.
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Figure 86. Effect of TDOA measurement error on TDOA3 geolocation accuracy with
application of DTED1 Earth constraint (500 trials)
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Figure 87. Effect of TDOA measurement error on TDOA4 geolocation accuracy with
application of DTED1 Earth constraint (500 trials, Passes 1-4)

136



The data trend is more sporadic than in Fig. 86 for a few possible reasons. As

observed in Table 14, because the TDOA4 algorithm had large errors after the ITL

and MLE processes, the DTED1 grid search was ineffective. Because the TDOA4

algorithm was found to be most sensitive to noise for this scenario, a few outliers

caused the RMSE to have more unpredictable behavior. Note that some of the Pass

5 data points are omitted in Fig. 87 because of their relatively large magnitude. A

complete graph with these points included is in App. B (Fig. 120). Despite the

inconsistency of the results, it can be generalized that less than 2 km accuracy is

possible for a 4-SV system implementing this TDOA4 algorithm for some pass types

and low measurement noise. Figures 88 and 89 demonstrate that for TFDOA3
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Figure 88. Effect of TDOA measurement error on TFDOA3 geolocation accuracy with
application of DTED1 Earth constraint (500 trials, 𝜎𝑓 = 10𝐻𝑧)

and TFDOA4, when there is a constant 10 Hz FDOA error, less than 50 ns TDOA

error is allowed to obtain sub-kilometer accuracy for all pass types. Note that the

TFDOA3 performance in Fig. 88 is similar to TDOA3 performance seen in Fig. 86 for

these conditions. Future analysis could investigate how TFDOA3 accuracy compares

137



40 60 80 100 120 140 160

TDOA 1-σ Error (ns)

0

0.5

1

1.5

2

2.5

3

3.5

4

G
e
o

lo
c
a
ti

o
n

 R
M

S
E

 (
k
m

)

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Figure 89. Effect of TDOA measurement error on TFDOA4 geolocation accuracy with
application of DTED1 Earth constraint (500 trials, 𝜎𝑓 = 10𝐻𝑧)

to TDOA3 depending on the FDOA measurement error. It is expected that the

TFDOA3 algorithm would have greater accuracy because it incorporates twice the

amount of measurements per collect, but the FDOA error and the MLE algorithm

influence how much the additional measurements improve the estimate.

5.3.3 FDOA Error Allowed

The effect of FDOA error on geolocation accuracy for the T/FDOA algorithms

can be seen in Figs. 90 - 91. Note that the FDOA error 𝜎𝜏̇ is nondimensionalized

by the carrier frequency, and represents the error in range rate difference measured

between the 𝑖𝑡ℎ and reference SVs. Thus to obtain the FDOA error 𝜎𝑓 required for a

particular signal of interest, simply multiply 𝜎𝜏̇ by the carrier frequency 𝑓𝑐. Also note

that for the duration of this analysis the TDOA error was held constant at 50 ns, so

results are limited to this case. It is seen in Fig. 90 that when there is 50 ns TDOA

error in the system, less than 10−7 of FDOA error (100 Hz for this 𝑓𝑐) is required to
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Figure 90. Effect of FDOA measurement error on TFDOA3 geolocation accuracy with
application of DTED1 Earth constraint (500 trials)
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Figure 91. Effect of FDOA measurement error on TFDOA4 geolocation accuracy with
application of DTED1 Earth constraint (500 trials)
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achieve sub-kilometer accuracy for all pass types. However, greater FDOA error is

tolerable if horizon passes are disregarded. Further work could explore what FDOA

is allowable for different TDOA errors.

5.3.4 Performance Analysis Summary

It is evident from Secs. 5.3.1, 5.3.2, and 5.3.3 that sub-kilometer geolocation

accuracy is achievable for the system described in Table 17, but only when there is

small measurement error. For AOA geolocation, 0.05∘ AOA error or less is required to

be confident sub-kilometer accuracy is obtained for all the pass geometries discussed

in this research. For TDOA and T/FDOA systems in this particular scenario, less

than 50 ns TDOA and 100 Hz error is desirable for sub-kilometer accuracy. Another

trend seen in this section was that overhead passes were generally more accurate than

horizon passes. Overhead passes contain more collects for an isotropic transmitter.

Furthermore, overhead passes contain signal collects taken from SVs with smaller

slant range 𝜌𝑖 to the transmitter.

5.4 System Design

The previous section analyzed the performance of geolocation systems based on

some known parameters. This section explains how one could use the geolocation sim-

ulation to develop a system design given some mission requirements. This procedure

is not intended to be exhaustive or optimal. However, it is an example of the steps

that can be taken to derive SV payload requirements for a hypothetical scenario.

Geolocation Requirement There is a requirement to geolocate a fixed-site

radar with the known properties from Table 5 with an accuracy of 2 km.

The first step is to examine Table 4, which contains all the geolocation simulation

input parameters. The designer should ask, which parameters are fixed and which
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are unknown? What assumptions can be made about each of the parameters? The

following paragraphs will discuss each of these parameters and how they might be

addressed for an example scenario.

Constraints For this example scenario, it is assumed that the SVs are con-

strained to a 500 km circular orbit with 64∘ inclination due to other mission require-

ments. Secondly, the geolocation cluster must consist of no more than 3 SVs.

Transmitter Characterization First note that all of the transmitter pa-

rameters are defined by the requirements, with the exception of the radar location

and altitude, which are obviously unknown. Thus it is necessary to choose an ar-

bitrary radar location for the purpose of the simulation. A more complex analysis

could include multiple radars or radars at varying altitudes or latitudes. For this

scenario a radar location of [15.5011∘, 100.4989∘] will be chosen. Now the true trans-

mitter altitude must be obtained. For this simulation, DTED0 and DTED1 are used

throughout for Earth constraints, so it is recommended an altitude based on higher

fidelity digital elevation models is used for true altitude. A true altitude of 25.8 m

(WGS84 height) obtained from a DTED2 post will be chosen (See Table 6). En-

sure that all DTED0, DTED1, and DTED2 files required for the chosen transmitter

location are downloaded.

Orbit Parameters The orbit parameters in Table 4 that are still undefined

are longitude of the ascending node (LAN), argument of latitude, orbit epoch, and

baseline distance. Two of many options for generating the first three of these orbit

parameters are:

∙ Propagate the known orbit with arbitrary LAN, argument of latitude, and orbit

epoch for several orbital periods in STK (or another propagator of choice), and
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analyze a particular pass.

∙ Manually define 5 (or more) passes with ground tracks similar to the ones in

Fig. 15 by shifting the LAN of the orbit.

Method two, “defining 5 passes manually in STK,” was chosen for this scenario (Table

7). Next the SV formation must be defined, including the baseline distance between

SVs. A good question to ask is: how large of a baseline can be implemented that

allows all SVs to still receive the same transmitter signal? If the baseline is too large,

all the SVs may not obtain enough collects of the same signal. Employing single-SV

AOA geolocation eliminates this problem. For more in depth analysis, the effect of

baseline distance on inter-satellite links could be considered to choose the correct

baseline for the mission. The SV formation chosen for this example is seen in Sec.

3.2.3.

Once the orbit and transmitter parameters are obtained, the instructions in Sec.

3.3 can be followed to propagate and obtain the SV positions and velocities corre-

sponding to signal collects. Analyses can also be conducted in STK to observe how

many signal collects can be expected on average [10].

Algorithms The algorithm was not constrained, however the number of

SVs was. Thus multiple algorithms can be simulated: AOA, TDOA3, TFDOA2,

and TFDOA3. For further research these algorithms can be fused as well to expand

the alternatives (AOA/TFDOA2, AOA/AOA, etc.). The simulation can be run with

the multiple algorithms and the results compared to consider the accuracy of the

algorithm versus cost of its utilization (AOA payload and # of SVs vs. TDOA3

payload and # of SVs). For this scenario only TFDOA3 will be shown.

System Errors The system errors modeled in the simulation are seen in

Table 4. None of these parameters are known based on this scenario’s requirements.
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For TFDOA3, the applicable system errors can be categorized as navigation errors

(absolute and relative positioning) and TDOA or FDOA measurement errors. The

goal is to make as many valid assumptions as possible and reduce the number of

unknowns. Since there have been recent proximity operations experiments for small

satellites in LEO, the absolute and relative positioning achievable can be assumed. A

more in depth analysis could include determining the navigation error allowable from

plots similar to those in Sec. 4.6.

Since the timing synchronization and DTO measurement errors are modeled as

additive Gaussian noise in this simulation, and they both contribute to overall TDOA

measurement error as seen in Sec. 3.4.2, they can be treated as general TDOA error.

The same can be said for FDOA error. Thus, TDOA and FDOA error are the only

remaining variables (with the exception of SV payload parameters). The simulation

can be run to determine the geolocation accuracy as a function of the independent

variables TDOA and FDOA error.

Measurement Error Allowable Since there are two variables, namely

TDOA and FDOA error, one can be fixed at a time with an arbitrary value for

simplicity. This exercise is done for the TFDOA3 case only for brevity’s sake. Fig.

92 shows the TDOA error allowable based on arbitrary FDOA error of 10 Hz. It is

concluded from Fig. 92 that less than 100 ns TDOA error is desirable when FDOA

error is 10 Hz. Also as a side note, Pass 3 tends to be most accurate for this radar

case. This is a different result than what was seen for the isotropic transmitter (Fig.

88), where Pass 1 was the most accurate.

Then the FDOA error allowable can be determined by holding the TDOA error

constant and varying FDOA error. It is shown in Fig. 93 that the FDOA error

permitted for the case of 50 ns TDOA error is about 6 × 10−6. Another iteration

of this process would yield more precise TDOA and FDOA requirements, but that
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Figure 92. Effect of TDOA measurement error on TFDOA3 geolocation accuracy with
application of DTED1 Earth constraint (500 trials, 𝜎𝑓 = 10𝐻𝑧)
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Figure 93. Effect of FDOA measurement error on TFDOA3 geolocation accuracy with
application of DTED1 Earth constraint (500 trials, 𝜎𝜏 = 50𝑛𝑠)
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exercise is left for the reader.

SV Payload Requirements Once the required TDOA and FDOA is deter-

mined, the designer can determine the payload requirements for measuring the DTO

and DFO, via the Complex Ambiguity Function for example (Sec. 2.3.2.3). The

CRLBs for the CAF (Eqs. 2.12, 2.13) can be used to determine the integration time

𝑇 required given a worse case SNR. Then the question could be asked: is the desired

𝑇 achievable for the chosen payload radio and the transmitter signal characteristics?

And for the payload antenna: is the gain pattern and pointing CONOPs sufficient

to detect the signal? Additionally, beyond signal detection, will the SNR of the re-

ceived signal be high enough to obtain the required DTO accuracy according to the

CRLB (Eqs. 2.12, 2.13). These same questions can be asked for the AOA payload,

pertaining to the number of signal samples 𝑁 and the type of antenna array, which

was covered in Sec. 2.3.1.

Summary This section outlined a simple method for utilizing the geoloca-

tion simulation to obtain some system level requirements given some mission require-

ments. While a single design scenario was explored, the tool set can be used for a

broad range of geolocation scenarios. The following chapter contains the conclusions

of this research effort.
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6. Conclusions

The goal of this research was to evaluate the performance of a CubeSat in LEO

and analyze the sensitivity of AOA, TDOA, and T/FDOA algorithms to system pa-

rameters. An STK-MATLAB simulation was developed to determine the geolocation

accuracy of a SV cluster utilizing any of the algorithms previously mentioned. A

higher fidelity Earth constraint (DTED0) was applied to formerly developed ITL al-

gorithms (TDOA3, T/FDOA). ML estimation was implemented for all 6 geolocation

methods. And finally, a Level 1 DTED grid search was utilized for all 6 methods to

obtain a more accurate, Earth constrained, geolocation solution.

6.1 Initial Transmitter Localization

The RF geolocation techniques can only be compared and contrasted to an extent,

because they have different measurement requirements and are employed from varying

numbers of platforms. For example, the AOA and TDOA4 algorithms investigated

are not limited to terrestrial transmitters. So if for a nominal scenario the TDOA4

algorithm had poor accuracy and TDOA3 had good accuracy, one could incorrectly

draw the conclusion that the TDOA3 algorithm has better performance. The same

could be said for the AOA algorithm, since it also does not require a ground constraint.

Therefore, any comparisons made apply to the geolocation of terrestrial transmitters

only, not the performance of the algorithm in general.

There were many findings from the sensitivity analysis conducted in Chapter 4,

the most notable of which will be discussed here. Firstly, it was determined that for

all algorithms an increase in slant range from the transmitter to the SVs increased

both the measurement error (MUSIC, CAF CRLB) and the effect of the noise on

the algorithm itself. Therefore increasing the altitude of the SV orbit has a negative
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impact on geolocation accuracy, as expected.

In addition, the geolocation accuracy of different pass types was analyzed. The

geolocation performance of the SVs for different pass types is highly dependent on the

measurement technique and the transmitter beam pattern. For the CRLB measure-

ment model (MUSIC and CAF) and isotropic transmitter simulated in this research,

the AOA and TDOA3 exhibited greater accuracy when passes were overhead the

transmitter and were most inaccurate for horizon passes. For the TDOA4 algorithm,

Passes 2-4 tended to be more accurate than overhead or horizon passes. And for the

measurement model simulated, each of the T/FDOA algorithms exhibited greater ac-

curacy for horizon passes, while overhead passes were the most inaccurate. Depending

on the measurement technique utilized, system designers could take advantage of ITL

sensitivities to pass geometry by employing two different algorithms, like AOA and

TFDOA2 for example, which complement each other’s weaknesses, and fusing the

measurements and/or estimates.

Overall, the more signal collects obtained by the SVs, the greater ITL accuracy

that can be achieved, depending on the method of combining the ITL solutions. A

non-weighted average was used to combine the ITL solutions in this research, because

that was a sufficient initial guess for ML estimation. However, it was shown that for

the ground constrained ITL methods (TDOA3, TFDOA2, TFDOA3, TFDOA4), a

greater number of collects did not improve accuracy for all cases when a non-weighted

average was utilized, since worse collection geometry leads to worse ITL solutions.

The TDOA4 algorithm from [24] was the most sensitive to system parameter noise.

Although it may outperform other ITL methods for transmitter unconstrained by the

Earth’s surface, for known terrestrial transmitters, it was the most inaccurate in all

cases. It is recommended that the TDOA algorithm for 𝑆 > 3 presented by Ho and

Chan in [23], which involves a Newton search much like TFDOA4, be explored for
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4-SV ITL using TDOA measurements only in the presence of system errors.

The TFDOA2 algorithm, employed with 2 SVs, generally exhibited more ITL

error for the scenarios in Chapter 4 than TDOA3, TFDOA3, and TFDOA4. However,

the TFDOA2 algorithm utilizes less measurements than those algorithms. Another

disadvantage of TFDOA2 was the solution ambiguity problem. Further work could

apply a constrained MLE for the TFDOA2 measurements since the unconstrained

MLE was ineffective. Also it is recommended that new formations for dual-satellite

TFDOA2 are tested. This research implemented a leader-follower formation, but

other formations could yield better geometric diversity which would lead to improved

geolocation estimates.

Finally, the negative impact of initial transmitter altitude error on ITL accuracy

was reaffirmed for the algorithms that utilize an Earth’s surface constraint (TDOA3,

T/FDOA). The DTED0 surface implemented into the ITL algorithms was shown

to greatly improve ITL solution accuracy, especially when the transmitter was at

locations of greater land elevation.

6.2 System Level Performance

The ML estimation employed in this research was found to significantly improve

upon the ITL solutions for the TDOA3, TDOA4, TFDOA3, and TFDOA4 methods.

The DTED1 grid search also successfully enhanced the ML estimates. Both of these

methods combined were found to be computationally inexpensive, averaging less than

2 seconds combined to process an entire pass of measurements and obtain a solution.

In addition, the performance analysis conducted in Chapter 5 was found to be

useful in determining the geolocation measurement error required to achieve sub-

kilometer accuracy. It was determined that 0.05∘ AOA, 50 ns TDOA, and 100 Hz

FDOA error was desirable for the case considered. Results could be improved by
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executing more trials. The methods of analyzing system level performance and system

design using the geolocation simulation proved to be good starting points for further

analyses.

6.3 Applicability of Results

Limitations and assumptions had to be made for this analysis. Firstly, a nominal

SV formation geometry was chosen for simplicity. Furthermore, it was assumed that

each SV utilized a 0 dB receiver with an isotropic beam pattern for signal collection.

It was assumed that the signal of interest could be measured, and that the cluster of

SVs could identify the same signal being received for each collect.

The type of transmitter, SV payload, signal measurement algorithm, and SV

formation are a few factors that could yield better or worse results. For example,

a more complex formation, such as the Natural Motion Circumnavigation (NMC)

formation discussed in Sec. 2.2, could yield more accurate TDOA and T/FDOA

results than seen in this thesis. In addition, SV payload antennas with gain patterns

favorable to incoming signals from the horizon could contribute to better accuracy

for Pass 5, or in other words, passes occurring close to the horizon as opposed to

overhead.

6.4 Recommendations for Future Study

There are several areas of this research which could be expanded upon and ex-

plored. One major assumption in this research was that the signal of interest could be

collected, distinguished, and measured at all of the SVs. In the future, incorporating

the MUSIC and CAF algorithm and actual simulation of the signal propagation and

measurement could add a degree of fidelity to the geolocation simulation. Secondly,

this research assumes a stationary transmitter. However, transmitters of interest
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could be stationary or mobile. Further research could be done to investigate the ef-

fects of different transmitter types, for example different beam patterns or transmit

power, on the satellite collection CONOPs and geolocation accuracy.

Decision-level fusion, or the fusion of already determined location estimates, was

explored by [8] and shown to be useful for improving geolocation accuracy. The anal-

yses in Chapter 5 could be conducted using fused estimates from multiple algorithms,

like AOA and TFDOA2 for example. Fusing estimates could lead to greater accu-

racy for a wider range of collection geometries, since the different ITL algorithms are

affected differently by collection geometry.

It was observed in Chapter 4 that the signal collection geometry highly affects the

accuracy of the ITL solution. If the geolocation payload could detect the elevation of

arrival of the signal, or somehow determine whether the signal was collected near the

horizon or overhead, the ITL solutions could be weighted not only by the measurement

error but by the estimated collection geometry.

This research utilized batch estimation to determine the optimal geolocation es-

timate based off an entire pass of measurements. Sequential methods like a Kalman

filter could be explored and compared to the batch method used in this research.

Furthermore, the method of implementing maximum likelihood estimation could be

improved upon. Using a constrained MLE instead of an unconstrained MLE could

improve accuracy and could be more conducive to the TFDOA2 model. Also, while

the unconstrained MLE was used for each ITL algorithm (AOA, TFDOA3, etc.)

individually to obtain the estimate that minimized the TDOA and FDOA measure-

ment, future work could investigate using angle, time, and frequency measurements

combined when determining the estimate that minimizes the measurement error.

And lastly, this tool set could be utilized in a variety of geolocation analyses, in-

cluding the optimization of mission orbits for the different RF geolocation techniques.
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6.5 Final Conclusion

This research provides a good overview and structure for analyzing a design prob-

lem that has many variables. Eliminating some simplifying assumptions, adding

fidelity to the simulation, and focusing the analysis in this research could lead to

significant improvements in geolocation performance analysis and system design.
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Appendix A. ITL Methods

This appendix contains the methods of implementing the Initial Transmitter Lo-

calization (ITL) algorithms (AOA, TDOA, T/FDOA) used in this research.

A.1 Angle of Arrival

This section describes in detail the process of obtaining 1 least squares estimate

for the location of a transmitter given 𝑀 azimuth and elevation measurements.

Import αs , εs , s1

Convert LOB from sensor to 

body frame ds → db (A.3)

Export  𝒖

Determine LOB ds in sensor 

frame using trigonometry (A.2)

Define LOB origin d0 in ECEF 

(d0 = s1) 

Use geometry to define LOB 

endpoint d1 in ECEF 

Least Squares Intersection of M 

LOBs (A.8)

F
o

r 
M

 c
o

lle
c
ts

M LOBs (d0 , d1)

Figure 94. AOA Algorithm Overview
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Inputs Start with the azimuths and elevations of arrival (Fig. 95) in the

sensor frame along with corresponding satellite ECEF positions.

𝛼𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1

𝛼2

. . .

𝛼𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝜖𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜖1

𝜖2

. . .

𝜖𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,S1 =

⎡⎢⎢⎢⎢⎣
s𝑇1,1
...

s𝑇1,𝑀

⎤⎥⎥⎥⎥⎦ (A.1)

m = 1

m = 2 M
M – 1

dM

\figlobs \figaoa

s1

s2

s3

ε

α

s(t)

\figunitlob

b1 = s1

b2 = s2

b3 = s3

ε

α

d̂

Figure 95. An impinging signal as shown in the sensor frame

Unit vectors representing the signal’s direction of arrival are generated using Eq.

A.2.

d̂ =

⎡⎢⎢⎢⎢⎣
cos𝛼 sin 𝜖

sin𝛼 sin 𝜖

cos 𝜖

⎤⎥⎥⎥⎥⎦ (A.2)

These lines of bearing must be transformed into the body frame, using a rotation

matrix R𝑏𝑠.

d̂𝑏 = R𝑏𝑠d̂𝑠 (A.3)

Modeling sensor frame rotation is outside the scope of this research, so the sensor

frame is assumed to be aligned with the body frame (R𝑏𝑠 = I3𝑥3).

153



m = 1

m = 2 M
M – 1

dM

\figlobs \figaoa

s1

s2

s3

ε

α

s(t)

\figunitlob

b1 = s1

b2 = s2

b3 = s3

ε

α

d̂

Figure 96. The line of bearing unit vector d̂ for a single 𝛼 and 𝜖

Step A:

Once you get stuff in body frame, convert from body to ENU.

𝜖𝐸𝑁𝑈 = −𝜖𝑏 𝜖𝐸𝑁𝑈 ∈ [−𝜋/2, 𝜋/2]

𝛼𝐸𝑁𝑈 = 𝑎𝑙𝑝ℎ𝑎𝑏 + 𝜑𝑛 𝛼𝐸𝑁𝑈 ∈ [0, 2𝜋]

(A.4)

The MATLAB commands ecef2geodetic and aer2ecef from the Aerospace Toolbox

are used to transform the direction of arrival d̂𝑏 into a vector d with origin d0 at the

satellite receiver position and endpoint d1 at some arbitrary length long enough to

intersect the Earth’s surface. Both d0 and d1 are expressed in ECEF coordinates.

Initial transmitter localization (ITL) can be achieved with a single measurement

by intersecting d with the Earth’s surface. However, in a single pass over the trans-

mitter of interest, the satellite can typically obtain multiple signal measurements,

depending on the scenario. For each (𝛼𝑚, 𝜖𝑚) a line of bearing can be generated.

Then least squares intersection can be applied to estimate the transmitter location

without utilizing the Earth’s surface as a constraint (Sec. 2.4.1). First each LOB with

starting point d0 and end point d1 (ECEF) must be normalized.

d̂𝑚 =
d1 − d0

‖d1 − d0‖
(A.5)
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Figure 97. LOB can be represented in ECEF coordinates after being transformed from
azimuth, elevation, and range in the body frame

The matrix P = I3𝑥3−uu𝑇 will project every vector u ∈ R3 into the plane orthogonal

to u which passes through the origin. For each LOB d this projection matrix is

( [55], [8])

P𝑚 = I3𝑥3 − d̂𝑚d̂
𝑇
𝑚 (A.6)

In order to find the orthogonal distance 𝛿𝑚 between a point u and an LOB d𝑚, the

LOB endpoint d1𝑚 and u must both be projected into the orthogonal plane.

𝛿𝑚 = ‖P𝑚u−P𝑚d1𝑚‖ (A.7)

The least squares solution is the point u which minimizes the sum of the squared

distances 𝛿𝑚 (Sec. 2.5.2).

û𝐿𝑆 = arg min
û

{︃
𝑀∑︁

𝑚=1

‖P𝑚û−P𝑚d1𝑚‖
2

}︃
(A.8)
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Define A =
∑︀𝑀

𝑚=1 P𝑚 and b =
∑︀𝑀

𝑚=1P𝑚d1𝑚 . As mentioned above, A maps û into

the orthogonal plane with b Eq. A.9.

Aû = b (A.9)

As discussed in Sec. 2.5.2, the least squares solution to this overdetermined problem

is given as [55]

û𝐿𝑆 =
(︀
A𝑇A

)︀−1
A𝑇b (A.10)

A.2 Time Difference of Arrival

A.2.1 TDOA4

This section describes in detail the process of obtaining 1 transmitter location

estimate given 3 TDOA measurements taken at approximately the same instant (4

satellites total, 1 reference).

Inputs The TDOA measurements and satellite positions are required. The

spherical Earth mean radius 6371 km is used as an initial guess by default.

𝜏𝑀×3 =

⎡⎢⎣𝜏21 𝜏31 𝜏41
...

...
...

⎤⎥⎦ ,S𝑖 =

⎡⎢⎢⎢⎢⎣
s𝑇𝑖,1
...

s𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, 3, 4 (A.11)

For each 𝑚 collect, Determine the range differences between receivers 2, 3, 4 and

reference receiver 1 using Eq. A.12.

𝑟𝑖1 = 𝑐𝜏𝑖1 = 𝜌𝑖 − 𝜌1 𝑖 = 2, 3, 4

𝜌𝑖 ≡ ‖𝜌𝑖‖ = ‖s𝑖 − u‖
(A.12)
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Import 𝝉 , 𝒔𝟏 … 𝒔𝟒 (for M collects)

For each m

Calculate proper  𝒖 based on ρ1 (A.26)

Set initial guess for Tx altitude 

(spherical Earth radius)

Convert 𝝉 to range differences (A.12)

Solve 2nd order equation for range from chief 

to Tx ( ρ1 )    (A.20-25)

Disambiguate roots to get correct ρ1

Use DTED Level 0 to estimate altitude at  𝒖

Update Tx altitude if change is > 0.1 km, if 

not then save  𝒖 and move to next m

Export M initial transmitter locations  𝒖 𝑴𝒙𝟑

Figure 98. TDOA4 Algorithm Overview
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Derivation of TDOA Equations Eq. A.12 to Eq. A.19

Start by expanding 𝜌𝑖.

𝜌𝑖 =
√︀

(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2 + (𝑧𝑖 − 𝑧𝑡)2 (A.13)

Rearrange terms in Eq. A.12, square both sides.

𝜌2𝑖 = 𝑟2𝑖1 + 2𝑟𝑖1𝜌1 + 𝜌21 (A.14)

Rearrange again.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 = 𝜌2𝑖 − 𝜌21 (A.15)

From Eq. A.13, 𝜌2𝑖 = (𝑥𝑖 − 𝑥𝑡)
2 + (𝑦𝑖 − 𝑦𝑡)

2 + (𝑧𝑖 − 𝑧𝑡)
2 . Expand this definition out:

𝜌2𝑖 = 𝑥2𝑖 − 2𝑥𝑖𝑥𝑡 + 𝑥2𝑡 + 𝑦2𝑖 − 2𝑦𝑖𝑦𝑡 + 𝑦2𝑡 + 𝑧2𝑖 − 2𝑧𝑖𝑧𝑡 + 𝑧2𝑡 (A.16)

Substitute Eq. A.16 for the right side of Eq. A.15.

𝜌2𝑖 − 𝜌21 =𝑥
2
𝑖 − 2𝑥𝑖𝑥𝑡 + 𝑥2𝑡 + 𝑦2𝑖 − 2𝑦𝑖𝑦𝑡 + 𝑦2𝑡 + 𝑧2𝑖 − 2𝑧𝑖𝑧𝑡 + 𝑧2𝑡

−
(︀
𝑥21 − 2𝑥1𝑥𝑡 + 𝑥2𝑡 + 𝑦21 − 2𝑦1𝑦𝑡 + 𝑦2𝑡 + 𝑧21 − 2𝑧1𝑧𝑡 + 𝑧2𝑡

)︀
=(𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖 )− (𝑥21 + 𝑦21 + 𝑧21)

− 2 [(𝑥𝑖 − 𝑥1)𝑥𝑡 + (𝑦𝑖 − 𝑦𝑡)𝑦𝑡 + (𝑧𝑖 − 𝑧1)𝑧𝑡]

(A.17)

This result plugged into Eq. A.15 gives the general TDOA equation.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 =(𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖 )− (𝑥21 + 𝑦21 + 𝑧21)

− 2[(𝑥𝑖 − 𝑥1)𝑥𝑡 + (𝑦𝑖 − 𝑦1)𝑦𝑡 + (𝑧𝑖 − 𝑧1)𝑧𝑡]

=s𝑇𝑖 s𝑖 − s𝑇1 s1 − 2(s𝑖 − s1)
𝑇u

(A.18)
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The expanded form of Eq. A.3.1 can be written for receivers 2,3, and 4 in matrix

form: ⎡⎢⎢⎢⎢⎣
𝑟221

𝑟231

𝑟241

⎤⎥⎥⎥⎥⎦+ 2𝜌1

⎡⎢⎢⎢⎢⎣
𝑟21

𝑟31

𝑟41

⎤⎥⎥⎥⎥⎦ = −2

⎡⎢⎢⎢⎢⎣
𝑥21 𝑦21 𝑧21

𝑥31 𝑦31 𝑧31

𝑥41 𝑦41 𝑧41

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑥𝑡

𝑦𝑡

𝑧𝑡

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
𝐾2

𝐾3

𝐾4

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎣
𝐾1

𝐾1

𝐾1

⎤⎥⎥⎥⎥⎦
𝐾𝑖 ≡ 𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖

(A.19)

Solving for 𝜌1 Kulumani [24] showed how Eq. A.19 can be rewritten solely

in terms of 𝜌1, the range from the transmitter to the reference satellite (Eq. A.20).

Once Eq. A.20 is solved the unknown transmitter position u = [𝑥𝑡, 𝑦𝑡, 𝑧𝑡]
𝑇 can be

determined.

0 = 𝐴𝜌21 +𝐵𝜌1 + 𝐶 (A.20)

Where 𝐴, 𝐵, and 𝐶 are constants to be derived below. In order to do so, some

intermediate constants are defined.

⎡⎢⎢⎢⎢⎣
𝛼1

𝛼2

𝛼3

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
𝑥21 𝑦21 𝑧21

𝑥31 𝑦31 𝑧31

𝑥41 𝑦41 𝑧41

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

𝑟21

𝑟31

𝑟41

⎤⎥⎥⎥⎥⎦ (A.21)

⎡⎢⎢⎢⎢⎣
𝛽1

𝛽2

𝛽3

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
𝑥21 𝑦21 𝑧21

𝑥31 𝑦31 𝑧31

𝑥41 𝑦41 𝑧41

⎤⎥⎥⎥⎥⎦
−1

1

2

⎡⎢⎢⎢⎢⎣
𝑟221 −𝐾2 +𝐾1

𝑟231 −𝐾3 +𝐾1

𝑟241 −𝐾4 +𝐾1

⎤⎥⎥⎥⎥⎦ (A.22)

The coefficients can now be written as:

𝐴 = 𝛼2
1 + 𝛼2

2 + 𝛼2
3 − 1 (A.23)
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𝐵 = 2(𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼3𝛽3 − 𝑥1𝛼1 − 𝑦1𝛼2 − 𝑧1𝛼3) (A.24)

𝐶 = 𝐾1 − 2𝑥1𝛽1 − 2𝑦1𝛽2 − 2𝑧1𝛽3 + 𝛽2
1 + 𝛽2

2 + 𝛽2
3 (A.25)

Now the quadratic equation Eq. A.20 can be simply solved for 𝜌1 (e.g. using MAT-

LAB function roots).

Root Disambiguation In addition to TDOA4, other methods like TDOA3,

TFDOA2, TFDOA3, and TFDOA4 each require solving polynomial equations and

disambiguating roots. The general process used in this research for root disambigua-

tion is shown in Fig. 99. The main method used is to remove negative roots and

Process (TDOA3, TDOA4, TFDOA2, TFDOA34)

If still ambiguous, cheat

Calculate range from  𝒖 to s1

Remove negative roots

Remove roots don’t satisfy coverage 

constraint 

Calculate max and min ρ1 based on 

line of sight (coverage constraint)

Solve for  𝒖 for each remaining ρ1

Choose  𝒖 closest to true 𝒖

For TDOA3 and TDOA4, pick positive 

complex conjugate (if present)

Figure 99. Root Disambiguation Process

apply the line of sight constraint, as recommended by Guo [3]. The disambiguation

method is not the most computationally efficient, but it was designed to be inter-

changeable between multiple algorithms. Furthermore, a cheat step was added so
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that in the presence of large measurement noise failed disambiguation would not de-

tract from the analysis, which is the main focus of this research. Kulumani [24] and

Ho [23] suggest using original measurement equations to choose the correct roots.

The second order equation Eq. A.23 will have 2 roots. Typically only one root is

positive and within the line of sight constraint. In the presence of measurement or

receiver knowledge error it is possible to obtain complex conjugates or in some cases

two real negative roots. In many cases the positive complex conjugate can be plugged

into Eq. A.26 to get a valid yet inaccurate solution. If there are no valid roots those

measurements are thrown out and the next set are used to obtain an ITL solution.

After disambiguation, the unknown u can be solved by rearranging Eq. A.19.

û = −

⎡⎢⎢⎢⎢⎣
𝑥21 𝑦21 𝑧21

𝑥31 𝑦31 𝑧31

𝑥41 𝑦41 𝑧41

⎤⎥⎥⎥⎥⎦
−1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝜌1

⎡⎢⎢⎢⎢⎣
𝑟21

𝑟31

𝑟41

⎤⎥⎥⎥⎥⎦+
1

2

⎡⎢⎢⎢⎢⎣
𝑟221 −𝐾2 +𝐾1

𝑟231 −𝐾3 +𝐾1

𝑟241 −𝐾4 +𝐾1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.26)

A.2.2 TDOA3

This section describes in detail the process of obtaining 1 transmitter location

estimate given 2 TDOA measurements taken at approximately the same instant (3

satellites total, 1 reference). This algorithm uses the Earth’s surface as an additional

constraint, assuming the transmitter has zero altitude. To combat error imposed by

unknown altitude and variation in 𝑟𝑒, an iteration method similar to the one in [3] is

utilized. The 𝑟𝑒 based off a spherical Earth is used as the initial guess, and each time

a new u is calculated, 𝑟𝑒 is updated based off of level 0 digital terrian elevation data

(App. B).
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Import 𝝉 , 𝒔𝟏 , 𝒔𝟐 , 𝒔𝟑 (for M collects)

For each m

Calculate proper  𝒖 based on ρ1 (A.44)

Set initial guess for Tx altitude 

(spherical Earth radius)

Convert τ to range differences (A.12)

Solve 4th order equation for range from chief 

to Tx ( ρ1 )     (A.33-43)

Disambiguate roots to get correct ρ1

Use DTED Level 0 to estimate altitude at  𝒖

Update Tx altitude if change is > 0.1 km, if 

not then save  𝒖 and move to next m

Export M initial transmitter locations  𝒖 𝑴𝒙𝟑

Figure 100. TDOA3 Algorithm Overview
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Inputs The TDOA measurements and satellite positions are required. The

spherical Earth mean radius 6371 km is used as an initial guess by default.

𝜏𝑀×2 =

⎡⎢⎣𝜏21 𝜏31
...

...

⎤⎥⎦ ,S𝑖 =

⎡⎢⎢⎢⎢⎣
s𝑇𝑖,1
...

s𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, 3 (A.27)

For each 𝑚 collect, Determine the range differences between receivers 2, 3 and

reference receiver 1 using Eq. A.12.

Derivation of TDOA Equations Eq. A.12 to Eq. A.32

First group the terms from Eq. A.16 in order to get

𝜌2𝑖 = (𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖 )− 2(𝑥𝑖𝑥𝑡 + 𝑦𝑖𝑦𝑡 + 𝑧𝑖𝑧𝑡) + (𝑥2𝑡 + 𝑦2𝑡 + 𝑧2𝑡 ) (A.28)

Using the definition of 𝐾𝑖 and assumption u𝑇u = 𝑥2𝑡 + 𝑦2𝑡 + 𝑧2𝑡 = 𝑟2𝑒 ,

𝜌2𝑖 = 𝐾𝑖 − 2(𝑥𝑖𝑥𝑡 + 𝑦𝑖𝑦𝑡 + 𝑧𝑖𝑧𝑡) + 𝑟2𝑒 (A.29)

Rearranging gives

2𝑥𝑖𝑥𝑡 + 2𝑦𝑖𝑦𝑡 + 2𝑧𝑖𝑧𝑡 =𝐾𝑖 + 𝑟2𝑒 − 𝜌2𝑖

2s𝑇𝑖 u = s𝑇𝑖 s𝑖+𝑟
2
𝑒 − 𝜌2𝑖

(A.30)

Eq. A.30 serves as the Earth’s surface constraint equation. The equations for satellites

2 and 3 can be obtained by plugging Eq. A.14 into Eq. A.30. The general form is

2𝑥𝑖𝑥𝑡 + 2𝑦𝑖𝑦𝑡 + 2𝑧𝑖𝑧𝑡 = 𝐾𝑖 + 𝑟2𝑒 − (𝑟2𝑖1 + 2𝑟𝑖1𝜌1 + 𝜌21) (A.31)
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Equations 2 and 3 can be added to the first constraint and put in matrix form:

⎡⎢⎢⎢⎢⎣
𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑥𝑡

𝑦𝑡

𝑧𝑡

⎤⎥⎥⎥⎥⎦ =
1

2

⎡⎢⎢⎢⎢⎣
𝐾1 + 𝑟2𝑒 − 𝜌2𝑖

𝐾2 + 𝑟2𝑒 − 𝜌2𝑖 − 2𝑟21𝜌1 − 𝑟221

𝐾3 + 𝑟2𝑒 − 𝜌2𝑖 − 2𝑟31𝜌1 − 𝑟231

⎤⎥⎥⎥⎥⎦ (A.32)

Solving for 𝜌1 Kulumani [24] demonstrated how Eq. A.32 can be expressed

solely in terms of 𝜌1, this time in a quartic equation.

𝐴𝜌41 + 𝐵̃𝜌31 + 𝐶𝜌21 + 𝐷̃𝜌1 + 𝐸̃ = 0 (A.33)

In order to obtain the unknown coefficients 𝐴− 𝐸̃ intermediate parameters must be

defined. ⎡⎢⎢⎢⎢⎣
𝛼

𝛽

𝜙

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝐾1 + 𝑟2𝑒

𝐾2 + 𝑟2𝑒 − 𝑟221

𝐾3 + 𝑟2𝑒 − 𝑟231

⎤⎥⎥⎥⎥⎦ (A.34)

⎡⎢⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎥⎦ =
1

2

⎡⎢⎢⎢⎢⎣
𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

⎤⎥⎥⎥⎥⎦
−1

(A.35)

⎡⎢⎢⎢⎢⎣
𝐴

𝐷

𝐺

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−1

−1

−1

⎤⎥⎥⎥⎥⎦ (A.36)

⎡⎢⎢⎢⎢⎣
𝐵

𝐸

𝐻

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎12 𝑎13

𝑎22 𝑎23

𝑎32 𝑎33

⎤⎥⎥⎥⎥⎦
⎡⎢⎣−2𝑟21

−2𝑟31

⎤⎥⎦ (A.37)
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⎡⎢⎢⎢⎢⎣
𝐶

𝐹

𝐼

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛼

𝛽

𝜙

⎤⎥⎥⎥⎥⎦ (A.38)

Once the intermediate parameters have been defined the unknown coefficients can be

calculated as shown below.

𝐴 = 𝐴2 +𝐷2 +𝐺2 (A.39)

𝐵̃ = 2𝐴𝐵 + 2𝐷𝐸 + 2𝐺𝐻 (A.40)

𝐶 = −2𝑥1𝐴− 2𝑦1𝐷 − 2𝑧1𝐺+ 2𝐴𝐶 + 2𝐷𝐹 + 2𝐺𝐼 +𝐵2 + 𝐸2 +𝐻2 − 1 (A.41)

𝐷̃ = −2𝑥1𝐵 − 2𝑦1𝐸 − 2𝑧1𝐻 + 2𝐵𝐶 + 2𝐸𝐹 + 2𝐻𝐼 (A.42)

𝐸̃ = −2𝑥1𝐶 − 2𝑦1𝐹 − 2𝑧1𝐼 + 𝐶2 + 𝐹 2 + 𝐼2 +𝐾1 (A.43)

Now the quartic equation Eq. A.33 can be simply solved for 𝜌1 (e.g. using MATLAB

function roots).

Root Disambiguation Four roots are produced from the quartic equation

Eq. A.33. The process for root disambiguation is seen in Fig. 99. There will only be

2 positive roots [3]. There will either be two real roots, one of which is valid, or two

complex conjugates. Sometimes in the presence of large measurement noise both real

roots satisfy line of sight or a complex conjugate does not meet the constraints at all.

After disambiguation, the unknown u can be solved by rearranging Eq. A.32 and

using the previously found 𝜌1.

û =
1

2

⎡⎢⎢⎢⎢⎣
𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

𝐾1 + 𝑟2𝑒 − 𝜌21

𝐾2 + 𝑟2𝑒 − 𝜌21 − 2𝑟21𝜌1 − 𝑟221

𝐾3 + 𝑟2𝑒 − 𝜌21 − 2𝑟31𝜌1 − 𝑟231

⎤⎥⎥⎥⎥⎦ (A.44)
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Iteration for Proper Altitude Once û is solved for, the geodetic latitude

and longitude are determined using ecef2geodetic. These coordinates are used to

obtain the altitude based on 30 arcsecond terrain data (Level 0, App. B). This data

has already been converted into WGS 84 ellispoid height ℎ. This ℎ becomes the new

𝑟𝑒. The maximum number of iterations is small to decrease computational burden.

In addition, the tolerance is set to reduce sensitivity to steep altitude gradients.

Max iterations = 3

Tolerance = 0.1 km

Set initial guess for Tx altitude (start with 

spherical earth mean radius 6371 km)

Recalculate Tx altitude based on u

Calculate u using ITL algorithm of choice

Calculate altitude change from previous 

iteration

while alt. change > tol

Use WGS84 

ellipsoid radius at 

u latitude as Tx 

latitude

Use DTED0 

elevation at u 

latitude to obtain 

Tx altitude 

Figure 101. Altitude Iteration Process

A.3 Time and Frequency Difference of Arrival

A.3.1 TFDOA2

This section describes in detail the process of obtaining 1 transmitter location

estimate given 1 TDOA and 1 FDOA measurement taken at approximately the same

instant (between 2 satellites). This algorithm uses the Earth’s surface as an additional
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constraint, assuming transmitter has zero altitude. The 𝑟𝑒 iteration method discussed

in Sec. A.2.2 is used to treat altitude knowledge error. Note that since 𝜌1 is used so

frequently throughout the next two sections, it is also referred to as 𝜌1.

Import 𝝉 ,  𝝉 , 𝒔𝟏 , 𝒔𝟐 ,  𝒔𝟏,  𝒔𝟐 (for M collects)

For each m

Calculate proper  𝒖 based on ρ1 (A.55) 

Set initial guess for Tx altitude (spherical 

Earth radius)

Convert 𝝉 and  𝝉 to range and range rate 

differences (A.12, A.46)

Solve 6th order equation for range from chief 

to Tx ( ρ1 )    (A.51-54)

Disambiguate roots to get correct ρ1

Use DTED Level 0 to estimate altitude at  𝒖

Update Tx altitude if change is > 0.1 km, if 

not then save  𝒖 and move to next m

Export M initial transmitter locations  𝒖 𝑴𝒙𝟑

Figure 102. TFDOA2 Algorithm Overview

Inputs The TDOA and FDOA measurements, positions, and velocities are

required. The spherical Earth mean radius 6371 km is used as an initial guess by
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default.

𝜏𝑀×1 =

⎡⎢⎣𝜏21...
⎤⎥⎦ , 𝜏̇𝑀×1 =

⎡⎢⎣𝜏21...
⎤⎥⎦ ,S𝑖 =

⎡⎢⎢⎢⎢⎣
s𝑇𝑖,1
...

s𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , Ṡ𝑖 =

⎡⎢⎢⎢⎢⎣
ṡ𝑇𝑖,1
...

ṡ𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2 (A.45)

For each time measurement 𝜏 , determine the range difference 𝑟𝑖1 between satellites 1

and 2 using Eq. A.12. Then for each frequency measurement 𝜏 determine the range

rate difference using Eq. A.46.

𝑟̇𝑖1 = 𝑐𝜏𝑖1 = 𝜌̇𝑖 − 𝜌̇1 𝑖 = 2, 3, 4 (A.46)

TDOA and FDOA Equations Recall the TDOA equation for the 𝑖𝑡ℎ re-

ceiver from Sec. A.2.1. This equation relates the measured 𝜌𝑖 to the transmitter

location u. Rearrange terms to obtain Eq. A.47.

𝑟2𝑖1 + 2𝜌1𝑟𝑖1 − s𝑇𝑖 s𝑖 + s𝑇1 s1 = −2(s𝑖 − s1)
𝑇u 𝑖 = 2, 3, ..., 𝑆 (A.47)

Then an equation utilizing the TDOA, FDOA, and transmitter location can be formed

by taking the derivative of Eq. A.47.

2𝑟𝑖1𝑟̇𝑖1 + 2𝑟𝑖1𝜌̇1 + 2𝑟̇𝑖1𝜌1 − 2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 = −2(ṡ𝑖 − ṡ1)
𝑇u 𝑖 = 2, 3, ..., 𝑆 (A.48)

Equations Eq. A.47 and Eq. A.48 each have three unknowns, u = [𝑥𝑡, 𝑦𝑡, 𝑧𝑡]
𝑇 .

Therefore if 𝑆 = 2 (two satellite receivers), there will be one TDOA equation and one

T/FDOA equation, and an additional constraint is required to obtain a solution. In

this case the Earth’s surface constraint can be used. Rearranging Eq. A.30 the third
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T/FDOA equation becomes

𝜌2𝑖 = 𝑟2𝑒 + s𝑇𝑖 s𝑖 − 2s𝑇𝑖 u 𝑖 = 2, 3, ..., 𝑆 (A.49)

Ho and Chan combine Eq. A.47 and Eq. A.48 for 𝑖 = 2, and Eq. A.49 for 𝑖 = 1 to

generate the matrix equation

u = G−1
1 h = G4𝜌𝑎 + g5𝜌̇1

G1 ≡ −2

⎡⎢⎢⎢⎢⎣
s𝑇1

s𝑇2 − s𝑇1

ṡ𝑇2 − ṡ𝑇1

⎤⎥⎥⎥⎥⎦

h ≡ G2𝜌𝑎 + g3𝜌̇1 =

⎡⎢⎢⎢⎢⎣
−𝑟2𝑒 − s𝑇1 s1 0 1

𝑟221 − s𝑇2 s2 + s𝑇1 s1 2𝑟21 0

2𝑟21𝑟̇21 − 2s𝑇2 ṡ2 + 2s𝑇1 ṡ1 2𝑟̇21 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1

𝜌1

𝜌21

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

0

2𝑟21

⎤⎥⎥⎥⎥⎦
G4 ≡ G−1

1 G2 g5 ≡ G−1
1 g3 𝜌𝑎 ≡ [1 𝜌1 𝜌

2
1]

𝑇

(A.50)

G1 must be invertible in order to obtain a solution for u. Ho [23] states that G1 is not

invertible when 1) s1, s2 and the Earth’s center all lie on a straight line or 2) (ṡ2− ṡ1),

the relative velocity between SV 1 and SV 2, is in the direction of (s2 − s1) or s1.

The goal is to obtain 𝜌1 in order to solve Eq. A.50 for the unknown transmitter u.

The algebraic dervivations Ho and Chan use to obtain an equation for 𝜌1 are detailed

in [3]and [23]. This section will only document the steps taken to solve for 𝜌1.

Solving for 𝜌1 First calculateG1, g3, G2, G4, and g6 as defined in Eq. A.50.

For the case without measurement or receiver knowledge error, Eq. A.51 should be

satisfied.

u = G−1
1 (G2𝜌𝑎 + g3𝜌̇1) (A.51)
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Determine new constants g6 and 𝑝. Verify Eq. A.52 is satisfied.

𝜌̇1 =
1

𝜌1 + 𝑝
g𝑇
6 𝜌𝑎

𝑝 ≡ ṡ𝑇1 g5 g6 ≡
[︂
s𝑇1 ṡ1 0 0

]︂𝑇
−G𝑇

4 ṡ1

(A.52)

Now define the constant G7. Eq. A.53 can be used for verification.

u =
G7𝜌𝑏

𝜌1 + 𝑝

G7 ≡
[︂
𝑝G4 + g5g

𝑇
6 03𝑥1

]︂
+

[︂
03𝑥1 G4

]︂
𝜌𝑏 ≡

[︂
1 𝜌1 𝜌21 𝜌31

]︂ (A.53)

Now obtain the 3 new constants G8, g7, and g8 to solve the 6𝑡ℎ order equation for

𝜌1. More than one method can be used to solve Eq. A.54, but this research uses the

MATLAB function roots to obtain 6 possible values of 𝜌1.

g𝑇
8 𝜌𝑐 = 0 (A.54)

g8 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G8(1, 1)− g7(1)

G8(2, 1) +G8(1, 2)− g7(2)

G8(3, 1) +G8(2, 2) +G8(1, 3)− g7(3)

G8(4, 1) +G8(3, 2) +G8(2, 3) +G8(1, 4)

G8(4, 2) +G8(3, 3) +G8(2, 4)

G8(4, 3) +G8(3, 4)

G8(4, 4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G8 ≡ G𝑇

7G7 g7 ≡ 𝑟2𝑒

[︂
𝑝2 2𝑝 1 0

]︂𝑇
𝜌𝑐 ≡

[︂
1 𝜌1 𝜌21 𝜌31 𝜌41 𝜌51 𝜌61

]︂
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Root Disambiguation Six roots are produced from solving Eq. A.55. See

Fig. 99 for the disambiguation process. When the ground tracks of the satellites are

close to the transmitter it is likely that two solutions within the coverage area will

arise. In practice, information such as the receiver antenna beam orientation might

be needed to choose the proper solution [3]. Typically there are two positive roots,

and no valid complex conjugates as in TDOA3 and TDOA4.

Finally, the proper 𝜌1 is used to find 𝜌𝑎 Eq. A.50, 𝜌̇1 Eq. A.52, and subsequently

u.

u = G4𝜌𝑎 + g5𝜌̇1 (A.55)

Iteration for Altitude As in Sec. A.2.2, the first ITL solution û is used to

update 𝑟𝑒 based on Level 0 digital elevation data.

A.3.2 TFDOA3

If there are 3 or more satellites then the system is overdetermined with at least

4 total equations (2 TDOA and 2 T/FDOA equations) and only 3 unknowns u =

[𝑥𝑡, 𝑦𝑡, 𝑧𝑡]
𝑇 . Ho and Chan [23] provide a general solution for the 𝑆 ≥ 3 case which is

utilized in this research. Note that while this section is titled TFDOA3, this algorithm

is applied to TFDOA4, the only difference is the number of input measurements, as

well as number of SV positions and velocities.

Inputs The TDOA and FDOA measurements, positions, and velocities an

are required. The spherical Earth mean radius 6371 km is used as an initial guess by
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Import 𝝉 ,  𝝉 , 𝒔𝒊 ,  𝒔𝒊 (for M collects)

For each m

Calculate proper  𝒖 based on ρ1 (A.76-77) 

Set initial guess for Tx altitude 

(spherical Earth radius)

Convert 𝝉 and  𝝉 to range and range rate 

differences, formulate constants (A.12, A.46)

Solve 7th order equation for range from chief 

to Tx ( ρ1 )   (A.58, A.68-75)

Disambiguate roots to get correct ρ1

Export M initial transmitter locations  𝒖 𝑴𝒙𝟑

Set 𝝀𝟑 = 𝟎 (To calculate  𝒖 w/o alt. constraint 

Use DTED Level 0 to update altitude at  𝒖

Use Newton method to determine  𝒖 that 

satisfies altitude constraint.

Figure 103. TFDOA3 Algorithm Overview
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default.

𝜏𝑀×𝑆−1 =

⎡⎢⎣𝜏21 . . . 𝜏𝑆1
...

...
...

⎤⎥⎦ , 𝜏̇𝑀×𝑆−1 =

⎡⎢⎣𝜏21 . . . 𝜏𝑆1
...

...
...

⎤⎥⎦

S𝑖 =

⎡⎢⎢⎢⎢⎣
s𝑇𝑖,1
...

s𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , Ṡ𝑖 =

⎡⎢⎢⎢⎢⎣
ṡ𝑇𝑖,1
...

ṡ𝑇𝑖,𝑀

⎤⎥⎥⎥⎥⎦ , 𝑖 = 1, 2, ..., 𝑆

(A.56)

Equation Set Up For the 𝑆 ≥ 3 case, there are 𝑆−1 TDOA measurements

and 𝑆 − 1 FDOA measurements, and therefore 2𝑆 − 2 total equations. Recall Eq.

A.47 and Eq. A.48 from Sec. A.3.1. Move all of the terms to the left side.

𝑟2𝑖1 − s𝑇𝑖 s𝑖 + s𝑇1 s1 + 2(s𝑖 − s1)
𝑇u+ 2𝑟𝑖1𝜌1 = 0

2𝑟𝑖1𝑟̇𝑖1 − 2s𝑇𝑖 ṡ𝑖 + 2s𝑇1 ṡ1 + 2(ṡ𝑖 − ṡ1)
𝑇u+ 2𝑟𝑖1𝑟̇1𝑡 + 2𝑟̇𝑖1𝜌1 = 0

𝑖 = 2, 3, ..., 𝑆

(A.57)

Ho and Chan [23] relate the range measurements 𝑟𝑖1 and 𝑟̇𝑖1 to the transmitter

position u. In matrix form this becomes

h−G1u− g2𝜌1 − g3𝜌̇1 = 0 (A.58)

h ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟221 − s𝑇2 s2 + s𝑇1 s1

𝑟231 − s𝑇3 s3 + s𝑇1 s1

. . .

𝑟2𝑆1 − s𝑇𝑆s𝑆 + s𝑇1 s1

2𝑟21𝑟̇21 − 2s𝑇2 ṡ2 + 2s𝑇1 ṡ1

2𝑟31𝑟̇31 − 2s𝑇3 ṡ3 + 2s𝑇1 ṡ1

. . .

2𝑟𝑆1𝑟̇𝑆1 − 2s𝑇𝑆 ṡ𝑆 + 2s𝑇1 ṡ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,G1 ≡ −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s𝑇2 − s𝑇1

s𝑇3 − s𝑇1

. . .

s𝑇𝑆 − s𝑇1

ṡ2 − ṡ1

ṡ3 − ṡ1

. . .

ṡ𝑆 − ṡ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,g2 ≡ −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟21

𝑟31

. . .

𝑟𝑆1

𝑟̇21

𝑟̇31

. . .

𝑟̇𝑆1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,g3 ≡ −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

. . .

0

𝑟21

𝑟31

. . .

𝑟𝑆1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In an ideal situation these equations could be satisfied, but in a real, overdetermined

situation a solution for the transmitter must be found that minimizes Eq. A.58, i.e.

brings the left side as close to zero as possible. Thus a cost function 𝜉 is defined that

squares Eq. A.58 and weights it with𝑊 , incorporating three constraint equations and

corresponding Lagrange multipliers 𝜆1, 𝜆2, and 𝜆3. The first constraint is obtained

by rearranging the TDOA equation Eq. A.50 for the reference satellite. The second

constraint is obtained from expanding and rearranging Eq. 2.7, which is the relation

between 𝜌̇1 and unknown transmitter u. The third equation corresponding to 𝜆3

constrains u to the assumed altitude 𝑟𝑒.

𝜉 =(h−G1u− g2𝜌1 − g3𝜌̇1)
𝑇W(h−G1u− g2𝜌1 − g3𝜌̇1)

+ 𝜆1(2s
𝑇
1 u− s𝑇1 s1 − 𝑟2𝑒 + 𝜌21) + 𝜆2(2ṡ

𝑇
1 u− 2s𝑇1 ṡ1 + 2𝜌21𝜌̇1)

+ 𝜆3(u
𝑇u− 𝑟2𝑒)

(A.59)

The proper estimate û is the one that minimizes 𝜉. The first term represents the

weighted error of the combined TDOA and T/FDOA equations.

Derivation of W The TDOA equations for non-reference satellites can be

seen in the first 𝑆 − 1 rows of Eq. A.58, while the T/FDOA equations are in the

second 𝑆 − 1 rows. The TDOA equation error due to TDOA measurement noise can

be inferred from Eq. A.58. Here u, 𝜌1, and 𝜌̇1 are the true values, and h, G1, and g2

are measured. ⎡⎢⎣𝜑𝑡

𝜑𝑓

⎤⎥⎦ ≡ h−G1u− g2𝜌1 − g3𝜌̇1 (A.60)

The true u, 𝜌1, and 𝜌̇1 are unknown, so Ho and Chan [23] derive the error in terms

of the true measurement error and the ranges 𝜌𝑖 (𝑖 = 2, ..., 𝑆). 𝑒𝜏 represents the

true TDOA measurement error in seconds and 𝑒𝜏̇ is the nondimensionalized FDOA
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measurement error.

𝜑𝑡,𝑖 = 𝑐𝜌𝑖𝑒𝜏 + 𝑐2𝑒2𝜏 ≈ 𝑐𝜌𝑖𝑒𝜏

𝜑𝑓,𝑖 = 𝑐𝜌̇𝑖𝑒𝜏 + 𝑐𝜌𝑖𝑒𝜏̇ + 2𝑐2𝑒𝜏𝑒𝜏̇ ≈ 𝑐𝜌̇𝑖𝑒𝜏 + 𝑐𝜌𝑖𝑒𝜏̇

(A.61)

The last terms can be eliminated from Eq. A.61 due to the small measurement noise

assumption, 𝜌𝑖 ≫ 𝑐𝑒𝜏 . The matrix W weights the TDOA and T/FDOA equation

error.

W = 𝐸[[𝜑𝑇
𝑡 , 𝜑

𝑇
𝑓 ]

𝑇 [𝜑𝑇
𝑡 , 𝜑

𝑇
𝑓 ]]

−1 (A.62)

W can be obtained by inserting Eq. A.61 into Eq. A.62 and expanding. This

derivation will assume 𝑆 = 3 for convenience, but same process applies for 𝑆 > 3.

Assume TDOA and FDOA measurement errors are uncorrelated, thus 𝐸[𝑒𝜏𝑖𝑒𝜏̇𝑖 ] = 0.

Also assume 𝐸[𝑒𝜏𝑖𝑒𝜏𝑗 ] = 0, 𝑖 ̸= 𝑗. Expanding the expectation, we get:

𝐸
{︁
[𝜑𝑡,1 𝜑𝑡,2 𝜑𝑓,1 𝜑𝑓,2]

𝑇 [𝜑𝑡,1 𝜑𝑡,2 𝜑𝑓,1 𝜑𝑓,2]
}︁
=

𝐸

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
4𝑐2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜌2𝑒
2
𝜏21

0 𝜌2𝜌̇2𝑒
2
𝜏21

0

0 𝜌23𝑒
2
𝜏31

0 𝜌3𝜌̇3𝑒
2
𝜏31

𝜌2𝜌̇2𝑒
2
𝜏21

0 𝜌̇22𝑒
2
𝜏21

+ 𝜌22𝑒
2
˙𝜏21

0

0 𝜌3𝜌̇3𝑒
2
𝜏31

0 𝜌̇23𝑒
2
𝜏31

+ 𝜌23𝑒
2
˙𝜏31

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

= 4𝑐2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜌2𝐸[𝑒𝜏21𝑒𝜏21 ] 0 𝜌2𝜌̇2𝐸[𝑒𝜏21𝑒𝜏21 ] 0

0 𝜌23𝐸[𝑒𝜏31𝑒𝜏31 ] 0 𝜌3𝜌̇3𝐸[𝑒𝜏31𝑒𝜏31 ]

𝜌2𝜌̇2𝐸[𝑒𝜏21𝑒𝜏21 ] 0 𝜌̇22𝐸[𝑒𝜏21𝑒𝜏21 ] + 𝜌22𝐸[𝑒 ˙𝜏21𝑒 ˙𝜏21 ] 0

0 𝜌3𝜌̇3𝑒
2
𝜏31

0 𝜌̇23𝐸[𝑒𝜏31𝑒𝜏31 ] + 𝜌23𝐸[𝑒 ˙𝜏31𝑒 ˙𝜏31 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.63)

175



Note that the measurement noise is independent and Gaussian, thus each expectation

can be substituted with its corresponding noise variance.

𝜎2
𝜏𝑖
= 𝐸[𝑒𝜏𝑖𝑒𝜏𝑖 ]

𝜎2
𝜏̇𝑖
= 𝐸[𝑒𝜏̇𝑖𝑒𝜏̇𝑖 ]

(A.64)

𝐸[[𝜑𝑇
𝑡 , 𝜑

𝑇
𝑓 ]

𝑇 [𝜑𝑇
𝑡 , 𝜑

𝑇
𝑓 ]] =

4𝑐2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜌2𝜎
2
𝜏21

0 𝜌2𝜌̇2𝜎
2
𝜏21

0

0 𝜌23𝜎
2
𝜏31

0 𝜌3𝜌̇3𝜎
2
𝜏31

𝜌2𝜌̇2𝜎
2
𝜏21

0 𝜌̇22𝜎
2
𝜏21

+ 𝜌22𝜎
2
˙𝜏21

0

0 𝜌3𝜌̇3𝜎
2
𝜏31

0 𝜌̇23𝜎
2
𝜏31

+ 𝜌23𝜎
2
˙𝜏31𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.65)

Then Eq. A.65 can be written in matrix form based on new variables B, Ḃ and the

measurement covariances Q𝑡 and Q𝑓 . Note that the constant 4 is factored into B

and Ḃ to agree with [23].

𝐸 {. . . } = 𝑐2

⎧⎪⎨⎪⎩
⎡⎢⎣B 0

Ḃ B

⎤⎥⎦
⎡⎢⎣Q𝑡 0

0 Q𝑓

⎤⎥⎦
⎡⎢⎣B Ḃ

0 B

⎤⎥⎦
⎫⎪⎬⎪⎭

B = 𝑑𝑖𝑎𝑔(𝜌2, ..., 𝜌𝑖) Ḃ = 𝑑𝑖𝑎𝑔(𝜌̇2, ..., 𝜌̇𝑖)

Q𝑡 =

⎡⎢⎣𝜎2
𝜏21

0

0 𝜎2
𝜏31

⎤⎥⎦ Q𝑓 =

⎡⎢⎣𝜎2
˙𝜏21𝑖

0

0 𝜎2
˙𝜏31𝑖

⎤⎥⎦
(A.66)

Therefore, ignoring scaling factor 𝑐2, Eq. A.62 can be simmplified to

W = 𝐸 {. . . }−1 =

⎧⎪⎨⎪⎩
⎡⎢⎣B 0

Ḃ B

⎤⎥⎦
⎡⎢⎣Q𝑡 0

0 Q𝑓

⎤⎥⎦
⎡⎢⎣B Ḃ

0 B

⎤⎥⎦
⎫⎪⎬⎪⎭

−1

(A.67)
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In practice W is scaled so that it’s maximum term has unit magnitude. The scaling

of W affects the eigenvalues of the first term in Eq. A.59, and thus influences the

increments of 𝜆3 used in application of the Secant method (Fig. 104). For a pass

consisting of multiple sets of measurements 𝑀 , W can be calculated for each 𝑀 or

once per pass. From Eq. A.67 it can be deduced that two measurements of equal error

may not result in identical T/FDOA equation error. The geometry of the satellites

from which the measurement was taken also has an influence.

Solving for 𝜌1 Ho and Chan [23] describe the derivations involved in ob-

taining 𝜌1. This section will solely include the process of solving for 𝜌1. First, let us

examine the method of obtaining the proper weighting matrix W.

Using range and range difference measurements as well as receiver positions and

velocities, obtain the constants h, G1, g2, and g3. Eq. A.58 should be satisfied in the

noise-free case. Next, the constants g7, G5, and g8 should be determined since they

are not dependent on 𝜆3, which will later be varied.

g7 =

[︂
s𝑇1 s1 + 𝑟2𝑒 0 −1 0 0

]︂𝑇
G5 =

[︂
h,−g2,0,−g3,0

]︂
g8 =

[︂
2ṡ𝑇1 ṡ1, 0, 0, 0,−2

]︂ (A.68)

From now on the constants needed to solve for 𝜌1 depend on the Lagrange multiplier

𝜆3. Start with 𝜆3 = 0, which signifies relaxing the Earth surface constraint. Then
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calculate G4, G6, g9, and g10.

G4 = (G𝑇
1WG1 + 𝜆3I)

−1 I = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

G6 = G4G
𝑇
1WG5⎡⎢⎣g𝑇

9

g𝑇
10

⎤⎥⎦ =
1

2

⎡⎢⎣s𝑇1G4s1 s𝑇1G4ṡ1

ṡ𝑇1G4s1 ṡ𝑇1G4ṡ1

⎤⎥⎦
−1 ⎡⎢⎣2s1G6 − g𝑇

7

2ṡ1G6 − g𝑇
8

⎤⎥⎦
(A.69)

Any change in 𝜆3 only affects the eigenvalues of G4, so an eigenvalue decomposition

[55] can be conducted on G𝑇
1WG1 to avoid matrix inversion Eq. A.70. This decreases

computation time, especially when the Newton method requires recalculating G4 for

each new 𝜆3. D is the diagonal matrix and X contains the eigenvectors.

G4 = (G𝑇
1WG1 + 𝜆3I)

−1 = (Y + 𝜆3I)
−1

= (XDX−1 + 𝜆3I)
−1

=
[︀
X(D+ 𝜆3I)X

−1
]︀−1

= X(D+ 𝜆3I)
−1X−1

(A.70)

Then G11 and G12 can be solved for.

G11 = G6 −G4(s1g
𝑇
9 + ṡ1g

𝑇
10)

G12 = G5 −G1G11

(A.71)

Determine the constants g13, g14, and g15.

g13 ≡ G𝑇
12W

𝑇g3

g14 ≡ [−𝑔13(4), 𝑔10(4)− 𝑔13(5), 𝑔10(5), 0, 0]
𝑇

g15 ≡ [−𝑔13(4), 𝑔10(4)− 𝑔13(5), 𝑔10(5), 0, 0]
𝑇

(A.72)
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Determine the constants G16, G17, and G18, and C.

G16 ≡ [g14,Cg14,C
2g14,g15,Cg15]

𝑇

G17 ≡ g14g
𝑇
9 G16

G18 ≡ (g15g
𝑇
10 − g14g

𝑇
2 WG12)G12

C ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.73)

Now the 7𝑡ℎ order equation for 𝜌1 can be solved.

𝜌1𝜌
𝑇
𝑑G17𝜌𝑑 + 𝜌

𝑇
𝑑G18𝜌𝑑 = 0

𝜌𝑑 ≡ [1, 𝜌1, 𝜌
2
1, 𝜌

3
1, 𝜌

4
1]

𝑇

(A.74)

This 7𝑡ℎ order equation can be rearranged algebraically and solved with the MATLAB

function roots to obtain 7 possible values for 𝜌1.

g𝑇
19[𝜌

7
1, 𝜌

6
1, 𝜌

5
1, 𝜌

4
1, 𝜌

3
1, 𝜌

2
1, 𝜌1, 1]

𝑇 = 0 (A.75)

g19 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G17(3, 5) +G18(4, 5)

G17(3, 4) +G17(2, 5) +G18(4, 4) +G18(3, 5)

G17(3, 3) +G17(2, 4) +G17(1, 5) +G18(4, 3) +G18(3, 4) +G18(2, 5)

G17(3, 2) +G17(2, 3) +G17(1, 4) +G18(4, 2) +G18(3, 3) +G18(2, 4) +G18(1, 5)

G17(3, 1) +G17(2, 2) +G17(1, 3) +G18(4, 1) +G18(3, 2) +G18(2, 3) +G18(1, 4)

G17(2, 1) +G17(1, 2) +G18(3, 1) +G18(2, 2) +G18(1, 3)

G17(1, 1) +G18(2, 1) +G18(1, 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Disambiguate Roots The 7 roots produced from solving Eq. A.74 need

to be disambiguated (Ref fig). There is typically only one positive root because the

system is overdetermined [23]. The proper root is used to determine 𝜌𝑑 Eq. A.74 ,𝜌̇1,

and 𝜌𝑒.

𝜌̇1 =
g𝑇
15𝜌𝑑

g𝑇
14𝜌𝑑

𝜌𝑒 =

[︂
1, 𝜌1, 𝜌

2
1, 𝜌̇1, 𝜌1𝜌̇1

]︂𝑇 (A.76)

Then an estimate for u can be obtained.

û = G11𝜌𝑒 (A.77)

Newton Method The process from Eq. A.69 to Eq. A.77 represents the

calculation of û when the altitude constraint is relaxed, i.e. 𝜆3 = 0. The next step is

to search for the 𝜆3 that satisfies Eq. A.78.

While the difference between altitude of  𝒖
and true 𝒓𝒆
 𝒖𝑻 𝒖 − 𝒓𝒆 > 𝒕𝒐𝒍

Calculate the gradient 𝑱 of 𝒇 𝝀𝟑 using 

finite difference approximation (secant 

method) 

Recalculate 𝒖(𝝀𝟑) and check  𝒖𝑻 𝒖 − 𝒓𝒆

Calculate constraint equation 𝒇 𝝀𝟑 =
 𝒖𝑻 𝒖 − 𝒓𝒆

𝟐

𝑱 =
𝒇 𝝀𝟑 − 𝒇(𝝀𝟑 + 𝒑𝒆𝒓𝒕)

𝒑𝒆𝒓𝒕

Solve Newton equation

𝝀𝟑 𝒌+𝟏
= 𝝀𝟑𝒌 −

𝒇 𝝀𝟑𝒌
𝑱

Figure 104. Solving for 𝜌1 using Newton Method
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𝑓(𝜆3) = u𝑇u− 𝑟2𝑒 = 0 (A.78)

The correct 𝜆3 is the zero of 𝑓(𝜆3) closest to 𝜆3 = 0, or in other words, the one

which utilizes the altitude constraint the least. Ho and Chan [23] suggest using

Newton method to find 𝜆3. This research uses finite differences, also known as the

Secant method, as a numerical approximation of the Newton method. The 𝜆3 search

implementation is outlined below.

The tolerance is the maximum allowable distance between the altitude of û and

desired altitude 𝑟𝑒. The magnitude of perturbation 𝜆̃3 is sensitive to the eigenvalues

of W. 𝜆̃3 was chosen to be 100 for this research. Inappropriate scaling of 𝜆̃3 relative

to W cause the Newton method to fail because 𝑓(𝜆3) is dominated by the noise of

numerical inprecision.
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Appendix B. Additional Methods

This appendix contains the process of importing digital terrain elevation data

(DTED) for this research.

B.1 Importing DTED

Digital elevation data can be imported from a variety of sources, however the data

utilized in this research was obtained from the US Geological Survey (USGS) Earth

Explorer website. The DTED level 1 used for this research was SRTM Void Filled

3-arc second DTED. SRTM 1-arc second global DTED was used for DTED2. Infor-

mation about this SRTM data can be obtained from [60].The DTED level 0 used for

altitude iteration within the ITL methods was obtained from Global Multi-resolution

Terrain Elevation Data (GMTED) 2010 [63]. All data used was free, unclassified, and

required the creation of an account with USGS.

B.1.1 DTED Level 0

GMTED 2010 is an improvement to the formerly developed model GTOPO30 [63].

In Earth Explorer the GMTED 2010 data is formatted as a GeoTiff (.tif) file, which

can be read into raster format using the MATLAB command geotiffread, resulting

in a 𝑀𝑥𝑁 double containing the elevation at each coordinate in meters. The mean

elevation data was used for this thesis. To reduce computation time within ITL

algorithms the orthometric heights 𝐻 were combined with geoid heights 𝑁 to produce

ellipsoid heights ℎ. These ellipsoid heights were stored in a MATLAB double.

B.1.2 DTED Levels 1 and 2

The SRTM data used for Level 1 and 2 mentioned above can be downloaded in

DTED format (.dt1 or .dt2) from Earth Explorer. The MATLAB command dted was
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utilized to convert the DTED file to an 𝑀 × 𝑁 double containing the elevation at

each coordinate in meters (raster data). More info can be obtained from [60] and [63].
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Appendix C. Additional Results

This appendix contains the additional results obtained for the analysis of ITL

sensitivity to SV location error, discussed in Sec. 4.6. It also contains a graph that

supplements the system level performance analysis in Sec. 5.3.2.
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Figure 105. TDOA4 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 106. TFDOA2 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 107. TFDOA3 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 108. TFDOA4 algorithm sensitivity to absolute position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 109. TFDOA2 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 110. TFDOA3 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 111. TFDOA4 algorithm sensitivity to absolute velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 112. TDOA3 algorithm sensitivity to relative position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 113. TDOA4 algorithm sensitivity to relative position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 114. TFDOA2 algorithm sensitivity to relative position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 115. TFDOA3 algorithm sensitivity to relative position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 116. TFDOA4 algorithm sensitivity to relative position error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 117. TFDOA2 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 118. TFDOA3 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 119. TFDOA4 algorithm sensitivity to relative velocity error (Tx 1, Pass 3, 1
collect, 10,000 trials)
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Figure 120. Effect of TDOA measurement error on TDOA4 geolocation accuracy with
application of DTED1 Earth constraint (500 trials)
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